Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Direct ; 3(3): e00127, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31245770

RESUMEN

The earliest visual changes of leaf senescence occur in the chloroplast as chlorophyll is degraded and photosynthesis declines. Yet, a comprehensive understanding of the sequence of catabolic events occurring in chloroplasts during natural leaf senescence is still missing. Here, we combined confocal and electron microscopy together with proteomics and biochemistry to follow structural and molecular changes during Arabidopsis leaf senescence. We observed that initiation of chlorophyll catabolism precedes other breakdown processes. Chloroplast size, stacking of thylakoids, and efficiency of PSII remain stable until late stages of senescence, whereas the number and size of plastoglobules increase. Unlike catabolic enzymes, whose level increase, the level of most proteins decreases during senescence, and chloroplast proteins are overrepresented among these. However, the rate of their disappearance is variable, mostly uncoordinated and independent of their inherent stability during earlier developmental stages. Unexpectedly, degradation of chlorophyll-binding proteins lags behind chlorophyll catabolism. Autophagy and vacuole proteins are retained at relatively high levels, highlighting the role of extra-plastidic degradation processes especially in late stages of senescence. The observation that chlorophyll catabolism precedes all other catabolic events may suggest that this process enables or signals further catabolic processes in chloroplasts.

2.
Biochim Biophys Acta ; 1817(2): 319-27, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22138629

RESUMEN

Exposure of cyanobacterial or red algal cells to high light has been proposed to lead to excitonic decoupling of the phycobilisome antennae (PBSs) from the reaction centers. Here we show that excitonic decoupling of PBSs of Synechocystis sp. PCC 6803 is induced by strong light at wavelengths that excite either phycobilin or chlorophyll pigments. We further show that decoupling is generally followed by disassembly of the antenna complexes and/or their detachment from the thylakoid membrane. Based on a previously proposed mechanism, we suggest that local heat transients generated in the PBSs by non-radiative energy dissipation lead to alterations in thermo-labile elements, likely in certain rod and core linker polypeptides. These alterations disrupt the transfer of excitation energy within and from the PBSs and destabilize the antenna complexes and/or promote their dissociation from the reaction centers and from the thylakoid membranes. Possible implications of the aforementioned alterations to adaptation of cyanobacteria to light and other environmental stresses are discussed.


Asunto(s)
Cianobacterias , Luz , Ficobilisomas/química , Ficobilisomas/fisiología , Ficobilisomas/efectos de la radiación , Estrés Fisiológico/fisiología , Cianobacterias/metabolismo , Cianobacterias/ultraestructura , Transporte de Electrón/efectos de la radiación , Recuperación de Fluorescencia tras Fotoblanqueo , Microscopía Confocal , Modelos Biológicos , Multimerización de Proteína/efectos de la radiación , Estructura Cuaternaria de Proteína , Espectrometría de Fluorescencia , Estrés Fisiológico/efectos de la radiación , Synechocystis/metabolismo , Synechocystis/fisiología , Synechocystis/ultraestructura , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...