Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pept Sci ; 30(4): e3550, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37853814

RESUMEN

Antimicrobial peptides (AMPs) are promising alternatives to conventional antibiotics and chemotherapy in the treatment of multidrug-resistant pathogens and drug-resistant cancers. Clinical application of AMPs is limited due to low stability and inefficient transport. Encapsulation in nanocarriers may improve their therapeutic potential. Chitosan nanoparticles (CS-NPs) are efficient carriers for proteins and peptides, improving the treatment of microbial infections and targeted drug delivery. We examined toxicity against cancer cell lines and antibacterial activities of the pleurocidin-like AMP NRC-07 upon encapsulation in CS-NPs by ionotropic gelation. The biological activities of various formulations of free and encapsulated NRC-07 and free nanoparticles were evaluated against Pseudomonas aeruginosa and breast cancer cells, using assays for cell viability and lactate dehydrogenase cytolysis with non-cancer cell lines as controls. NRC-07-containing nanoparticles decreased the bacterial and cancer cell viability in a concentration-dependent manner. Activities of encapsulated peptide were >2-fold higher than those of free NRC-07 peptide. Unloaded CS-NPs and free peptide were not cytotoxic against control cells. Encapsulation of NRC-07 into CS-NPs enhanced the antibacterial and selective cytotoxicity of the peptide, possibly enhancing anticancer activities. Encapsulation presents a promising tool for the development of efficient drug delivery systems.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias , Humanos , Quitosano/farmacología , Péptidos Antimicrobianos , Antibacterianos/farmacología , Péptidos/farmacología
2.
Int J Biol Macromol ; 253(Pt 2): 126652, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673169

RESUMEN

Channelopathies arise from ion channel dysfunction. Successful treatment entails delivery of functional ion channels to replace dysfunctional ones. Glycine receptor (GlyR)-rich cell membrane fragments (CMF) were previously delivered to target cell membranes using fusogenic liposomes. Here, cystic fibrosis transmembrane conductance regulator (CFTR)-bearing CMF were similarly delivered to target cells. We studied the effect of lipid composition on liposomes' ability to incorporate CMF and fuse with target cell membranes to deliver functional CFTR. Four formulations were prepared using thin-film hydration out of different lecithin sources, egg and soy lecithin (EL and SL), in the presence and absence of cholesterol (CHOL): EL + CHOL, EL-CHOL, SL + CHOL, and SL-CHOL. EL liposomes incorporated more CMF than SL liposomes, with CHOL only increasing CMF incorporation in SL liposomes. SL + CHOL fused better with target cell membranes than EL + CHOL. SL + CHOL and EL + CHOL equally delivered CFTR to target cell membranes, owing to the former's superior fusogenic capacity and the latter's superior CMF-incorporation capacity. SL-CHOL and EL-CHOL delivered CFTR to a lesser extent, indicating the importance of CHOL for fusion. Patch-clamp electrophysiology and confocal laser scanning microscopy (CLSM) confirmed CFTR delivery to target cell membranes by SL + CHOL. Therefore, CMF-bearing fusogenic liposomes offer a promising universal platform for the treatment of channelopathies.


Asunto(s)
Canalopatías , Fibrosis Quística , Humanos , Liposomas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Lecitinas , Canalopatías/tratamiento farmacológico
3.
Eur J Pharm Biopharm ; 184: 16-24, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640916

RESUMEN

Alzheimer's disease (AD) is the most common type of dementia. Increasing evidence is showing the important role of mitochondrial dysfunction in AD. Mitochondria based oxidative stress, decrease in respiratory chain activity and ATP production are all associated with AD, hence indicating that the enhancement of mitochondrial function and biogenesis present a promising therapeutic approach for AD. Nitric oxide (NO) is an initiator of mitochondrial biogenesis. However, its gaseous nature and very short half-life limit the realization of its therapeutic potential. Additionally, its uncontrolled in-vivo distribution results in generalized vasodilation, hypotension among other off-target effects. Diazeniumdiolates (NONOates) are NO donors that release NO in physiological temperature and pH. Their encapsulation within a hydrophobic matrix carrier system could control the release of NO, and at the same time enable its delivery to the brain. In this work, PAPANONOate (PN) a NO donor was encapsulated in small (92 ± 7 nm) poly (lactic-co-glycolic acid) (PLGA) NPs. These NPs did not induce hemolysis upon intravenous administration and were able to accumulate in the brains of lipopolysaccharides (LPS) induced neurodegeneration mouse models. The encapsulation of PN within a hydrophobic PLGA matrix enabled the sustained release of NO from NPs (≈ 3 folds slower relative to free PN) and successfully delivered PN to brain. As a result, PN-NPs but not free PN resulted in an enhancement in memory and cognition in animals with neurodegeneration as determined by the Y-maze test. The enhancement in cognition was a result of increased mitochondria function as indicated by the increased production of ATP and Cytochrome C oxidase enzyme activity.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Óxido Nítrico , Ácido Poliglicólico/química , Ácido Láctico/química , Nanopartículas/química , Mitocondrias , Adenosina Trifosfato
4.
Mol Pharm ; 19(9): 3163-3177, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35876358

RESUMEN

Increasing antibiotic concentrations within bacterial cells while reducing them in mammalian ones would ultimately result in an enhancement of antibacterial actions, overcoming multidrug resistance, all while minimizing toxicity. Nanoparticles (NPs) have been used in numerous occasions to overcome antibiotic resistance, poor drug solubility, and stability. However, the concomitant increase in antibiotic concentration in mammalian cells and the resultant toxicity are usually overlooked. Without compromising bacterial cell fusion, large liposomes (Lip) have been reported to show reduced uptake in mammalian cells. Therefore, in this work, small NP fraught liposomes (NP-Lip) were formulated with the aim of increasing NP uptake and antibiotic delivery in bacterial cells but not in mammalian ones. Small polylactic-co-glycolic acid NPs were therefore loaded with erythromycin (Er), an antibiotic with low membrane permeability that is susceptible to drug efflux, and 3c, a 5-cyanothiazolyl urea derivative with low solubility and stability. In vitro experiments demonstrated that the incorporation of small NPs into large Lip resulted in a reduction in NP uptake by HEK293 cells while increasing it in Gram-negative bacteria (Escherichia coli DH5α, E. coli K12, and Pseudomonas aeruginosa), consequently resulting in an enhancement of antibiotic selectivity by fourfold toward E. coli (both strains) and eightfold toward P. aeruginosa. Ocular administration of NP-Lip in a P. aeruginosa keratitis mouse model demonstrated the ability of Er/3c-loaded NP-Lip to result in a complete recovery. More importantly, in comparison to NPs, the ocular administration of NP-Lip showed a reduction in TNF-alpha and IL-6 levels, implying reduced interaction with mammalian cells in vivo. This work therefore clearly demonstrated how tailoring the nano-bio interaction could result in selective drug delivery and a reduction in toxicity.


Asunto(s)
Antibacterianos , Nanopartículas , Animales , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/metabolismo , Células HEK293 , Humanos , Liposomas/metabolismo , Mamíferos/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
5.
Mol Pharm ; 19(5): 1635-1646, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35380849

RESUMEN

The nanoparticle (NP) protein corona represents an interface between biological components and NPs, dictating their cellular interaction and biological fate. To assess the success of cellular targeting, NPs modified with targeting ligands are incubated with target cells in serum-free culture medium or in the presence of fetal bovine serum (FBS). In the former, the role of the corona is overlooked, and in the latter, the effects of a corona that does not represent the one forming in humans nor the respective disease state are considered. Via proteomic analysis, we demonstrate how the difference in the composition of FBS, sera from healthy human volunteers, and breast cancer patients (BrCr Pt) results in the formation of completely different protein coronas around the same NP. Successful in vitro targeting of breast cancer cells was only observed when NPs were incubated with target cells in the presence of BrCr Pt sera only. In such cases, the success of targeting was not attributed to the targeting ligand itself, but to the adsorption of specific serum proteins that facilitate NP uptake by cancer cells in the presence of BrCr Pt sera. This work therefore demonstrates how the serum source affects the reliability of in vitro experiments assessing NP-cell interactions and the consequent success or failure of active targeting and may in fact indicate an additional reason for the limited clinical success of drug targeting by NPs in cancer.


Asunto(s)
Neoplasias de la Mama , Quitosano , Nanopartículas , Corona de Proteínas , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Ácido Fólico , Humanos , Nanopartículas/metabolismo , Corona de Proteínas/metabolismo , Proteómica , Reproducibilidad de los Resultados , Albúmina Sérica Bovina
6.
Colloids Surf B Biointerfaces ; 211: 112289, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34954516

RESUMEN

Due to its overexpression in cancer cells, the folate receptor (FR) is heavily exploited in the active targeting of nanoparticles (NPs). Its ligand, folic acid (FA) is as a consequence widely used as a NP targeting ligand. Although rather popular and successful in principle, recent data has shown that FA may result in breast cancer initiation and progression, which questions the suitability of FA as NP cancer targeting ligand. In this work, intravenous administration of free FA to healthy female mice resulted in breast tissue dysplasia, hyperplasia and in the increased expression of human epidermal growth factor receptor-2 (HER2), folate receptor (FR), cancer antigen 15-3 (CA15.3), vascular endothelial growth factor (VEGF), signal transducer and activator of transcription 3 (STAT3) and the pro-inflammatory cytokines, tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6) and interleukin-1ß. In addition to the reduction in IL2. To evaluate the suitability and safety of FA as NP targeting ligand in breast cancer, small (≈ 150 nm) and large (≈ 500 nm) chitosan NPs were formulated and decorated with two densities of FA. The success of active targeting by FA was confirmed in two breast cancer cell lines (MCF-7 and MDA-MB-231 cells) in comparison to HEK293 cells. FA modified NPs that demonstrated successful active targeting in-vitro were assessed in-vivo. Upon intravenous administration, large NPs modified with a high density of FA accumulated in the breast tissue and resulted in similar effects as those observed with free FA. These results therefore question the suitability of FA as a targeting ligand in breast cancer and shed light on the importance of considering the activity (other than targeting) of the ligands used in NP active targeting.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Ácido Fólico/metabolismo , Células HEK293 , Humanos , Ligandos , Ratones , Factor A de Crecimiento Endotelial Vascular
7.
Int J Pharm ; 606: 120879, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34265391

RESUMEN

Channelopathies are disorders caused by reduced expression or impaired function of ion channels. Most current therapies rely on symptomatic treatment without addressing the underlying cause. We have recently established proof of principle for delivery of functional ion channel protein into the membrane of target cells using fusogenic liposomes incorporating glycine receptor (GlyR)-containing cell membrane fragments (CMF) that were formulated by thin film hydration. Here, the effect of liposome size and the formulation technique on the performance of the delivery vehicle was assessed. Three types of liposomes were prepared using lecithin and cholesterol, (i) small (SL), and (ii) large (LL) liposomes made by thin film hydration, and (iii) small liposomes prepared by vortex agitation (V-SL). All liposomes were evaluated for their ability to (i) incorporate GlyR-rich CMF, (ii) fuse with the cell membrane of target cells and (iii) deliver functional GlyR, as assessed by patch-clamp electrophysiology. SL prepared by thin film hydration offered the most effective delivery of glycine receptors that gave clear glycine-mediated currents in target cells. LL showed higher incorporation of CMF, but did not effectively fuse with the target cell membrane, while V-SL did not incorporate sufficient amounts of CMF. Additionally, SL showed minimalin vivotoxicity upon intrathecal injection in mice. Thus, liposome-mediated delivery of membrane proteins may be a promising therapeutic approach for the treatment of channelopathies.


Asunto(s)
Liposomas , Proteínas de la Membrana , Animales , Membrana Celular , Colesterol , Ratones , Fosfatidilcolinas
8.
J Control Release ; 337: 258-284, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34293319

RESUMEN

The coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has taken the world by surprise. To date, a worldwide approved treatment remains lacking and hence in the context of rapid viral spread and the growing need for rapid action, drug repurposing has emerged as one of the frontline strategies in the battle against SARS-CoV2. Repurposed drugs currently being evaluated against COVID-19 either tackle the replication and spread of SARS-CoV2 or they aim at controlling hyper-inflammation and the rampaged immune response in severe disease. In both cases, the target for such drugs resides in the lungs, at least during the period where treatment could still provide substantial clinical benefit to the patient. Yet, most of these drugs are administered systemically, questioning the percentage of administered drug that actually reaches the lung and as a consequence, the distribution of the remainder of the dose to off target sites. Inhalation therapy should allow higher concentrations of the drug in the lungs and lower concentrations systemically, hence providing a stronger, more localized action, with reduced adverse effects. Therefore, the nano-reformulation of the repurposed drugs for inhalation is a promising approach for targeted drug delivery to lungs. In this review, we critically analyze, what nanomedicine could and ought to do in the battle against SARS-CoV2. We start by a brief description of SARS-CoV2 structure and pathogenicity and move on to discuss the current limitations of repurposed antiviral and immune-modulating drugs that are being clinically investigated against COVID-19. This account focuses on how nanomedicine could address limitations of current therapeutics, enhancing the efficacy, specificity and safety of such drugs. With the appearance of new variants of SARS-CoV2 and the potential implication on the efficacy of vaccines and diagnostics, the presence of an effective therapeutic solution is inevitable and could be potentially achieved via nano-reformulation. The presence of an inhaled nano-platform capable of delivering antiviral or immunomodulatory drugs should be available as part of the repertoire in the fight against current and future outbreaks.


Asunto(s)
COVID-19 , ARN Viral , Antivirales/uso terapéutico , Reposicionamiento de Medicamentos , Humanos , Nanomedicina , SARS-CoV-2
9.
Eur J Pharm Biopharm ; 148: 54-66, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31945489

RESUMEN

A variety of hepatic insults result in the accumulation of collagen-rich new extracellular matrix in the liver, ultimately culminating in liver fibrosis and cirrhosis. For such reasons, approaches looking into digestion of the collagen-rich extracellular matrix present an interesting therapeutic approach for cases of chronic liver disease, where the fibrotic scar is well established. Portal collagenase administration has recently led to the successful reversion of cirrhosis in an experimental rabbit model. Notwithstanding, the question of how such a sensitive therapeutic macromolecule could be administered in a less invasive manner, and in a way that preserves its functionality and avoids digestion of other non-hepatic vital collagen presents itself. Chitosan is a biodegradable polymer that has been reported to interact and bind to collagen. Chitosan nanoparticles (CS NPs) have also been reported to encapsulate therapeutic proteins, maintaining their functional form and protecting them from in-vivo degradation. For such reasons, CS NPs were loaded with collagenase and evaluated in-vitro and in-vivo for their ability to target and digest collagen. CS NPs were able to encapsulate collagenase (≈ 60% encapsulation efficiency) and release its content in active form. To determine whether chitosan's collagen interaction would enable NP collagen binding or whether the modification with collagen binding peptides (CBPs) is necessary, CS NPs were modified with the CBP; CCQDSETRTFY. Since the density of targeting ligand and the length of tether play a significant role in the success of active targeting, the surface of NPs was modified with different densities of the CBP either directly or using a polyethylene glycol (PEG) spacer. PEGylated NPs showed higher levels of CBP tagging; high, intermediate and low density of CBPs corresponded to 585.8 ± 33, 252.9 ± 25.3 and 56.5 ± 8.8 µg/mL for PEGylated NPs and 425.56 ± 12.67, 107.91 ± 10.3 and 49.86 ± 3.2 µg/mL for unPEGylated NPs, respectively. In-vitro collagen binding experiments showed that unmodified CS NPs were able to bind collagen and that modification with CBPs either directly or via PEG did not enhance collagen binding. In-vivo experiments demonstrated that unmodified CS NPs were able to reverse fibrosis with a survival rate of 100% at the end of the study, indicating the ability of CS NPs to deliver functional collagenase to the fibrotic liver and making the use of CBPs unnecessary.


Asunto(s)
Quitosano/química , Cicatriz/terapia , Colagenasas/administración & dosificación , Cirrosis Hepática/terapia , Animales , Cicatriz/patología , Colágeno/metabolismo , Colagenasas/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Cirrosis Hepática/patología , Masculino , Ratones , Nanopartículas , Polietilenglicoles/química
10.
Int J Biol Macromol ; 153: 1080-1089, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31756462

RESUMEN

Defects in transmembrane ion channels underlie many disorders, commonly known as channelopathies. Current therapies are mostly symptomatic and do not treat the underlying cause. Here, we demonstrate the delivery of functional ion channels in protein form into the membrane of target cells using fusogenic proteoliposomes. The glycine receptor (GlyR) was adopted as a model channel. HEK293 cells were transfected with GlyR and GlyR-rich cell membrane fragments (CMF) were incorporated into fusogenic liposomes. Proteoliposomes were generated using 1,2-dioleoylphosphoethanolamine (DOPE) as the fusogenic lipid, lecithin, 1,2-distearoylphosphoethanolamine (DSPE), and cholesterol (Chol). Three formulations were prepared Non-fuse (2.5:0.5 Lecithin: Chol), Fuse1 (1.25:0.25:0.25:0.25) and Fuse2 (1.25:0.5:0.5:0.25 Lecithin: DOPE: DSPE: Chol). Proteoliposomes were assessed for their ability to (1) incorporate GlyR rich CMF (2) fuse with L929 fibroblast cell membrane and (3) deliver functional GlyR to these cells. All formulations were capable of integrating CMF, with Fuse2 showing highest CMF incorporation (1.2 and 1.4 folds relative to Non-fuse and Fuse1 respectively). All liposomes showed ability to fuse with the fibroblast cell membrane, with Fuse2 showing highest fusion. Patch-clamp analysis demonstrated successful delivery of functional GlyR into the fibroblast cell membrane. Thus, proof of principle was established for the use of liposomes to deliver functional ion channels to living cells.


Asunto(s)
Membrana Celular/metabolismo , Canalopatías/tratamiento farmacológico , Receptores de Glicina/administración & dosificación , Receptores de Glicina/metabolismo , Canalopatías/metabolismo , Células HEK293 , Humanos , Liposomas , Receptores de Glicina/uso terapéutico
11.
Eur J Pharm Biopharm ; 134: 96-106, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30471341

RESUMEN

Preventing hepatic stellate cell (HSC) activation represents a promising approach to resolve liver fibrosis. Several drugs have been reported to delay/prevent HSCs activation, however with limited clinical benefits. The latter may be in part attributed to the limited ability of such drugs in targeting more than one pathway of HSC activation. Added to that, is their inability of reaching their target cell in sufficient amounts to induce a therapeutic effect. In this work, chitosan NPs were loaded with JQ1 and atorvastatin, two drugs that have been reported to prevent HSCs activation, however via different mechanisms. NPs were then modified with different densities of retinol (Rt) for active targeting of HSCs. The NP HSCs targeting ability as a function of Rt density was assessed in vitro on primary HSCs and in vivo in carbon tetrachloride (CCl4) induced fibrotic mouse models. In vitro NPs modified with a low Rt density (LRt-NPs) showed ≈2 folds enhanced HSCs uptake in comparison to unmodified NPs, whereas NPs modified with a high Rt density (HRt-NPs) showed ≈0.8 folds change in uptake relative to unmodified NPs. Similarly, in vivo LRt-NPs showed higher accumulation in fibrotic livers in comparison to healthy livers whereas HRt-NPs and unmodified NPs showed lower accumulation in fibrotic livers relative to healthy controls respectively. Finally, the ability of drug-loaded NPs in preventing HSCs activation was assessed by monitoring the reduction in α-smooth muscle actin (α-SMA) expression by Western blot. NPs loaded with both JQ1 and atorvastatin showed reduction in α-SMA expression. In addition, a synergistic reduction in α-SMA was observed when cells were co-treated with JQ1 and atorvastatin loaded NPs.


Asunto(s)
Atorvastatina/administración & dosificación , Azepinas/administración & dosificación , Células Estrelladas Hepáticas/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Cirrosis Hepática/tratamiento farmacológico , Triazoles/administración & dosificación , Actinas/metabolismo , Animales , Tetracloruro de Carbono/toxicidad , Quitosano/química , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Células HEK293 , Células Estrelladas Hepáticas/inmunología , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/inmunología , Cirrosis Hepática/patología , Masculino , Ratones , Nanopartículas/química , Proteínas Nucleares/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Resultado del Tratamiento , Vitamina A/química
12.
Eur J Pharm Biopharm ; 129: 74-79, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29802982

RESUMEN

Lactoferrin (Lf) exerts anti-cancer effects on glioma, however, the exact mechanism remains unclear. Despite possessing a nuclear localization sequence (NLS), Lf was found to allocate only in the cytoplasm of glioma 261. Lf was therefore loaded into nuclear and cytoplasmic targeted nanoparticles (NPs) to determine whether nuclear delivery of Lf would enhance its anti-cancer effect. Upon treatment with 300 and 800 µg/mL Lf loaded chitosan NPs, nuclear targeted Lf-NPs showed 1.3 and 2.7 folds increase in cell viability, whereas cytoplasmic targeted Lf-NPs at 300 µg/mL decreased cell viability by 0.8 folds in comparison to free Lf and controls. Results suggest that the cytotoxicity of Lf on glioma is attributable to its cytoplasmic allocation. Nuclear delivery of Lf induced cell proliferation rather than cytotoxicity, indicating that the mode of action of Lf in glioma is cell location dependent. This calls for caution about the general use of Lf as an anti-cancer protein.


Asunto(s)
Antineoplásicos/farmacología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Portadores de Fármacos/química , Lactoferrina/farmacología , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quitosano/química , Glioma/tratamiento farmacológico , Lactoferrina/uso terapéutico , Ratones , Nanopartículas/química , Permeabilidad
13.
Curr Pharm Des ; 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29173151

RESUMEN

BACKGROUND: Multidrug resistance in cancer is the ability of a cancer cell to resist treatment with a wide range of structurally and functionally dissimilar chemotherapeutics. The resistant phenotype could arise in response to several cellular changes that ultimately result in a decrease in intracellular drug accumulation (or effectiveness), either by limiting cellular drug entry, or by expulsion of those molecules that have made it into the cell. Both blocking drug cellular entry and its expulsion are mostly brought about by the cell membrane. Several pharmaceutical excipients (mainly lipids, surfactants and amphililc copolymers) have been reported to reverse multidrug resistance by addressing cell membrane related changes resulting in low intracellular drug levels in resistant cells. These excipients are routinely used in the preparation of lipid based nanoparticles endowing inherent multidrug resistance reversing properties to these nanoparticles. METHODS: In this review, cell membrane alterations resulting in multidrug resistance will be initially reviewed, followed by a discussion of the different types of lipid NPs and the potential held by the excipients used in their preparation in multidrug resistance reversal. Finally, a discussion on how lipid nanoparticles have been engineered and used in different occasions to enable multidrug resistance reversal is included. CONCLUSION: The superior role held by lipid nanoparticles in comparison to free excipients will be highlighted.

14.
Pharmacol Res ; 126: 2-30, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28760489

RESUMEN

Multidrug resistance (MDR) is associated with a wide range of pathological changes at different cellular and intracellular levels. Nanoparticles (NPs) have been extensively exploited as the carriers of MDR reversing payloads to resistant tumor cells. However, when properly formulated in terms of chemical composition and physicochemical properties, NPs can serve as beyond delivery systems and help overcome MDR even without carrying a load of chemosensitizers or MDR reversing molecular cargos. Whether serving as drug carriers or beyond, a wise design of the nanoparticulate systems to overcome the cellular and intracellular alterations underlying the resistance is imperative. Within the current review, we will initially discuss the cellular changes occurring in resistant cells and how such changes lead to chemotherapy failure and cancer cell survival. We will then focus on different mechanisms through which nanosystems with appropriate chemical composition and physicochemical properties can serve as MDR reversing units at different cellular and intracellular levels according to the changes that underlie the resistance. Finally, we will conclude by discussing logical grounds for a wise and rational design of MDR reversing nanoparticulate systems to improve the cancer therapeutic approaches.


Asunto(s)
Portadores de Fármacos/química , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Nanopartículas/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Humanos
15.
J Control Release ; 253: 30-36, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28254629

RESUMEN

The cell nucleus is an interesting target in many diseases with particular interest in cancer. Previously, nuclear targeted small and large chitosan nanoparticles (S-NPs≈25nm, and L-NPs≈150nm respectively), modified with low, intermediate and high densities of NLS (L-NLS, I-NLS and H-NLS) were developed and assessed in L929 fibroblasts. However, to evade apoptosis and stimulate tumor growth cancer cells are capable of manipulating the nuclear-cytoplasmic transport on many levels, making NPs that are capable of nuclear targeting in normal cells incapable of doing so in cancer. For such reason, here, the nuclear delivery efficiency of S-NPs and L-NPs was assessed as a function of their NLS density in cancer and non-cancer cells. For S-NPs, in all cells tested, NLS was unnecessary for nuclear delivery; unmodified S-NPs showed higher nuclear delivery than NLS-S-NPs due to their ability to gain nuclear entry in a passive manner. For L-NPs, L-NLS-L-NPs showed ≈ 8.5, 33, 1.8 and 7.2 fold higher nuclear deliveries than H-NLS-L-NPs in L929 fibroblasts, primary human fibroblasts, HEK 293 and lung cancer cells, respectively. In glioma however, unmodified L-NPs showed highest nuclear delivery, whereas NLS-L-NPs were retained in the cytoplasm. Experiments conducted in the presence of inhibitors of the classical nuclear import pathway indicated that due to overexpression of importin α, classical nuclear import in glioma is impaired leading to aberrant NP intracellular trafficking and nuclear import.


Asunto(s)
Quitosano/administración & dosificación , Glioma/metabolismo , Nanopartículas/administración & dosificación , Transporte Biológico , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Quitosano/química , Fibroblastos/metabolismo , Humanos , Nanopartículas/química , Señales de Localización Nuclear , Tamaño de la Partícula
16.
Carbohydr Polym ; 164: 57-63, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28325344

RESUMEN

A platform for nucleic acid detection employing chitosan and chitosan coated gold nanoparticles (AuNPs) was developed. Mycobacterium tuberculosis (MTB) was used as a model target. MTB DNA was extracted from sputum using simple total nucleic acid extraction. Following amplification of MTB DNA, chitosan and AuNPs were added to samples. Free chitosan conjugated non-target DNA in negative samples, avoiding AuNP-DNA interaction and hence negative samples remained red. In positive samples, amplified DNA was capable of saturating free chitosan leading to AuNP aggregation where positive samples turned blue. Via visual color detection 15/16 MTB positive samples and 3/3 negative samples were correctly identified. This test is a 1-tube, 1-step assay reducing the risk of contamination in molecular laboratories and is a proof of concept on how chitosan; a cheap polymer could increase the sensitivity of AuNPs towards specific detection of nucleic acids without using target specific oligotargeters or expensive extraction kits.


Asunto(s)
Quitosano , ADN Bacteriano/aislamiento & purificación , Nanopartículas del Metal , Esputo/química , Oro , Humanos , Mycobacterium tuberculosis , Sensibilidad y Especificidad , Tuberculosis/diagnóstico
17.
J Control Release ; 229: 140-153, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-26995759

RESUMEN

The nucleus is ultimately the final target for many therapeutics treating various disorders including cancers, heart dysfunction and brain disorders. Owing to their specialized cell uptake and trafficking mechanisms, nanoparticles (NPs) allow drug targeting where degradation sensitive therapeutics could be delivered to their target tissues and cell in active form and sufficient concentration. However, it has recently become increasingly obvious that cytosolic internalization of a drug molecule does not entail its interaction with its subcellular target and hence careful nanoparticle design and optimization is required to enable nuclear targeting. This review, discusses the barriers to NP nuclear delivery; crossing the cell membrane, endo/lysosomal escape, cytoplasmic trafficking and finally nuclear entry focusing on how NP synthesis and modification could allow for bypassing each of the aforementioned barriers and successfully reaching the nucleus. Examples of nuclear targeted NPs are also discussed, stressing on the critical aspects of nuclear targeting and pointing out how the disease state might change the normal NP path and how such change could be exploited to increase efficiency of nuclear targeting. Finally, the criteria set for the evaluation of nanocarriers for nuclear delivery are discussed highlighting that quantitative rather than qualitative evaluation is required to evaluate how successful nanocarriers for nuclear delivery are, particularly with regards to the amount of drug delivered and released in the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Diseño de Fármacos , Humanos
18.
Mol Pharm ; 12(12): 4277-89, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26465978

RESUMEN

Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High-NLS-L-NPs). Results indicate that a higher NLS density does not result in maximum protein nuclear localization and that a universal optimal density for NPs of different sizes does not exist.


Asunto(s)
Núcleo Celular/metabolismo , Quitosano/química , Nanopartículas/química , Señales de Localización Nuclear/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quitosano/administración & dosificación , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Endosomas/metabolismo , Ratones , Nanopartículas/administración & dosificación , Señales de Localización Nuclear/administración & dosificación , Tamaño de la Partícula
19.
Int J Biol Macromol ; 81: 858-66, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26385503

RESUMEN

Chitosan has become a popular polymer for drug delivery. It's hydro solubility and mild formulation conditions have made it an attractive polymer for macromolecular delivery. Accurate quantification of internalized chitosan nanoparticles (NPs) is imperative for fair assessment of the nano-formulation where it is important to determine the exact amount of drug actually being delivered into the cell, especially for macromolecular drugs where cellular entry is limited by molecule size and/or charge. The preferential affinity of wheat germ agglutinin tagged with fluorescein isothiocyanate (WGA-FITC) to chitosan is exploited in the development of a simple and rapid method for the differentiation between and quantification of cell surface bound and internalized chitosan NPs. The percentage of cell surface bound NPs could be easily determined and corrected NP uptake could be calculated accordingly. The developed method is applicable in several cell lines and has successfully been tested with NPs with different sizes (25 and 150nm) and with very low NP concentrations (20µg/mL). The method will allow for the correct evaluation of chitosan NP uptake and could be further used to evaluate chitosan based nanomedicine and provide guidelines on how to modify NPs for enhanced internalization, and improved drug delivery.


Asunto(s)
Membrana Celular/metabolismo , Quitosano/metabolismo , Endocitosis , Ensayos Analíticos de Alto Rendimiento/métodos , Nanopartículas/química , Adsorción , Animales , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Fibroblastos/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Cinética , Ratones , Microscopía Confocal , Tamaño de la Partícula , Albúmina Sérica Bovina/metabolismo , Aglutininas del Germen de Trigo/metabolismo
20.
J Biomed Nanotechnol ; 11(4): 555-77, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26310064

RESUMEN

Biodegradable micro- and nanoparticles have the potential to reform the drug development landscape by improving drug solubility, changing undesirable pharmacokinetics, realizing the benefits of new molecules arising from genomic and proteomic research, and increasing drug localization in target organs and tissues; i.e., drug targeting. This review provides an overview of the in vivo fate of biodegradable particulate carriers following administration via several routes, as well as how the patient's health state, disease pathophysiology and particle physicochemical properties affect such fates. It also discusses some of the widely used biodegradable polymers, their in vivo biochemical degradation, methods of nanoparticle formulation from such polymers and finally, how such methods could be tailored to achieve targeted delivery to specified tissues both passively and actively.


Asunto(s)
Materiales Biocompatibles/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Animales , Biotecnología/métodos , Diseño de Fármacos , Humanos , Ligandos , Nanopartículas/química , Nanotecnología/métodos , Neoplasias/tratamiento farmacológico , Polímeros/química , Solubilidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...