Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Reprod Med Biol ; 23(1): e12580, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756693

RESUMEN

Purpose: Decidualization is an important event for embryo implantation and successful pregnancy. Impaired decidualization leads to implantation failure and miscarriage. However, it is unclear how often decidualization failure occurs in infertile women. By analyzing the endometrium at late-secretory phase, we investigated the incidence and pathogenesis of decidualization failure among infertile women. Methods: Endometrial dating was performed on the endometria obtained in the late-secretory phase from 33 infertile women. Endometrial dating of more than 2 days delay was taken as an indication of decidualization failure. The expression of essential transcription factors for decidualization (FOXO1, WT1, and C/EBPß) was examined by immunohistochemistry. Results: Among 32 cases, 20 cases (62.5%) showed decidualization failure. These patients tended to have a history of more frequent miscarriages than those without decidualization failure. The percentage of cells that immunostained positive for the expression of three transcription factors was significantly lower in the patients with decidualization failure than in those without decidualization failure. Serum progesterone levels measured in the mid- and late-secretory phase were not significantly different between the cases with and without decidualization failure. Conclusions: The incidence of decidualization failure is high in infertile women.

2.
Sci Rep ; 14(1): 7726, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565619

RESUMEN

Decidualization can be induced by culturing human endometrial stromal cells (ESCs) with several decidualization stimuli, such as cAMP, medroxyprogesterone acetate (MPA) or Estradiol (E2). However, it has been unclear how decidualized cells induced by different stimuli are different. We compared transcriptomes and cellular functions of decidualized ESCs induced by different stimuli (MPA, E2 + MPA, cAMP, and cAMP + MPA). We also investigated which decidualization stimulus induces a closer in vivo decidualization. Differentially expressed genes (DEGs) and altered cellular functions by each decidualization stimuli were identified by RNA-sequence and gene-ontology analysis. DEGs was about two times higher for stimuli that use cAMP (cAMP and cAMP + MPA) than for stimuli that did not use cAMP (MPA and E2 + MPA). cAMP-using stimuli altered the cellular functions including angiogenesis, inflammation, immune system, and embryo implantation whereas MPA-using stimuli (MPA, E2 + MPA, and cAMP + MPA) altered the cellular functions associated with insulin signaling. A public single-cell RNA-sequence data of the human endometrium was utilized to analyze in vivo decidualization. The altered cellular functions by in vivo decidualization were close to those observed by cAMP + MPA-induced decidualization. In conclusion, decidualized cells induced by different stimuli have different transcriptome and cellular functions. cAMP + MPA may induce a decidualization most closely to in vivo decidualization.


Asunto(s)
Endometrio , Acetato de Medroxiprogesterona , Femenino , Humanos , Células Cultivadas , Endometrio/metabolismo , Acetato de Medroxiprogesterona/farmacología , Células del Estroma/metabolismo , Expresión Génica , ARN/metabolismo , Decidua/metabolismo
3.
Reprod Med Biol ; 23(1): e12572, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571514

RESUMEN

Purpose: To investigate whether long noncoding RNAs (lncRNAs) are involved in the development or malignant behavior of ovarian high-grade serous carcinoma (HGSC), we attempted to identify lncRNAs specific to HGSC. Methods: Total RNAs were isolated from HGSC, normal ovarian, and fallopian tube tissue samples and were subjected to a PCR array that can analyze 84 cancer-associated lncRNAs. The lncRNAs that were upregulated and downregulated in HGSC in comparison to multiple samples of normal ovary and fallopian tube were validated by real-time RT-PCR. To infer the function, ovarian cancer cell lines that overexpress the identified lncRNAs were established, and the activation of cell proliferation, migration, and invasion was analyzed. Results: Eleven lncRNAs (ACTA2-AS1, ADAMTS9-AS2, CBR3-AS1, HAND2-AS1, IPW, LINC00312, LINC00887, MEG3, NBR2, TSIX, and XIST) were downregulated in HGSC samples. We established the cell lines that overexpress ADAMTS9-AS2, CBR3-AS1, or NBR2. In cell lines overexpressing ADAMTS9-AS2, cell proliferation was suppressed, but migration and invasion were promoted. In cell lines overexpressing CBR3-AS1 or NBR2, cell migration tended to be promoted, although cell proliferation and invasion were unchanged. Conclusion: We identified eleven lncRNAs that were specifically downregulated in HGSC. Of these, CBR3-AS1, NBR2, and ADAMTS9-AS2 had unique functions in the malignant behaviors of HGSC.

5.
Reprod Med Biol ; 23(1): e12564, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361634

RESUMEN

Purpose: We investigated the interactions between mural granulosa cells (MGCs) and cumulus granulosa cells (CGCs) during ovulation after the LH surge. Methods: We performed clustering, pseudotime, and interactome analyses utilizing reported single-cell RNA sequencing data of mouse ovary at 6 h after eCG-hCG injection. Results: Clustering analysis classified granulosa cells into two distinct populations, MGCs and CGCs. Pseudotime analysis divided granulosa cells into before and after the LH surge, and further divided them into two branches, the ovulatory MGCs and the ovulatory CGCs. Interactome analysis was performed to identify the interactions between MGCs and CGCs. Twenty-six interactions were acting from CGCs toward MGCs, involving ovulation and steroidogenesis. Thirty-six interactions were acting from MGCs toward CGCs, involving hyaluronan synthesis. There were 25 bidirectional interactions, involving the EGFR pathway. In addition, we found three novel interactions: Ephrins-Ephs pathway and Wnt-Lrp6 pathway from CGCs to MGCs, associated with steroidogenesis and lipid transport, respectively, and TGF-ß-TGFBR1 pathway from MGCs to CGCs, associated with hyaluronan synthesis. Conclusions: MGCs and CGCs interact with each other in the preovulatory follicle after the LH surge, and their interactions have roles in corpus luteum formation, oocyte maturation, and follicle rupture.

6.
Reprod Med Biol ; 22(1): e12548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107653

RESUMEN

Purpose: To test the theory that invaginated ovarian surface epithelium and endometrial implants on the ovary form ovarian endometriomas. Methods: Adhesion sites of ovarian endometrioma on the peritoneum and consecutive ovarian endometrioma cyst wall, called non-adhesion sites, were histologically examined. DNA methylomes of the adhesion sites, non-adhesion sites, and blueberry spots were compared with those of ovary, endometrium, and peritoneum. Results: The non-adhesion sites showed an ovarian surface epithelium-like structure near the adhesion site, which continued to a columnar epithelium-like structure. Calretinin staining was strong in the ovarian surface epithelium-like structure but weak in the columnar epithelium-like structure. Estrogen receptors were absent in the ovarian surface epithelium-like structure, but present in the columnar epithelium-like structure. The adhesion sites had endometrial gland-like structures that expressed estrogen receptors. Analyses of DNA methylomes classified the non-adhesion sites and ovaries into the same group, suggesting that ovarian endometriomas originate from the ovarian surface epithelium. The adhesion sites, blueberry spots and peritoneum were classified in the same group, suggesting that the adhesion sites and blueberry spots originate from the peritoneum. Conclusions: The present results support the invagination theory. Ovarian endometriomas consist of invaginated ovarian surface epithelium with celomic metaplasia and endometrium implants on the peritoneum.

7.
Mol Hum Reprod ; 29(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37310913

RESUMEN

Human endometrial stromal cells (hESCs) undergo a differentiation process with dramatic changes in cell functions during the menstrual cycle, which is called decidualization. This is an important event for implantation of the embryo and successful pregnancy. Defective decidualization can cause implantation failure, miscarriage, and unexplained infertility. A number of genes are upregulated or downregulated during decidualization. Recent studies have shown that epigenetic mechanisms are involved in the regulation of decidualization-related genes and that histone modifications occur throughout the genome during decidualization. The present review focuses on the involvement of genome-wide histone modifications in dramatic changes in gene expression during decidualization. The main histone modifications are the increases of H3K27ac and H3K4me3, which activate transcription. C/EBPß works as a pioneer factor throughout the genome by recruiting p300. This is the main cause of the genome-wide acetylation of H3K27 during decidualization. Histone modifications were observed in both the proximal promoter and distal enhancer regions. Genome editing experiments show that the distal regions have transcriptional activities, which suggests that decidualization induces the interactions between proximal promoter and distal enhancer regions. Taken together, these findings show that gene regulation during decidualization is closely associated with genome-wide changes of histone modifications. This review provides new insights regarding the cases of implantation failure in terms of decidualization insufficiency owing to epigenetic dysregulation, and may lead to novel treatment options for women with implantation failure.


Asunto(s)
Decidua , Endometrio , Embarazo , Humanos , Femenino , Endometrio/metabolismo , Decidua/metabolismo , Código de Histonas/genética , Expresión Génica , Células del Estroma/metabolismo
8.
Endocr J ; 70(5): 465-472, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37081638

RESUMEN

Decidualization is a process of differentiation of human endometrial stromal cells (hESCs) accompanied by dramatic changes in cellular functions. This process is critical for embryo implantation and the establishment of pregnancy. Impairment of decidualization of hESCs leads to implantation failure, miscarriage, and unexplained infertility. The present review focuses on the metabolic changes in hESCs during decidualization. One of the changes taking place is in the glucose metabolism. Glucose uptake increases during decidualization because glucose is essential for the decidualization of hESCs. In hESCs, GLUT1 is highly expressed and involved in the increase of glucose uptake during decidualization. The up-regulation of GLUT1 is mediated by an epigenetic mechanism, which is regulated by CCAAT enhancer-binding protein ß (C/EBPß) and Wilms tumor 1 (WT1). Another metabolic change is in the lipid metabolism. Lipid accumulation in hESCs increases during decidualization. This increase is mediated by very low-density lipoprotein receptor (VLDLR). The up-regulation of VLDLR is regulated by WT1. In contrast to glucose, lipid is not essential for decidualization of hESCs. Endometrial cells have been implicated as important sources of nutrition for the embryo. hESCs may increase glucose and lipid storage so that they can supply them to the embryo during the implantation process. Taken together, decidualization is the process accompanied by metabolic changes, which may be associated with successful implantation.


Asunto(s)
Decidua , Metabolismo de los Lípidos , Embarazo , Femenino , Humanos , Decidua/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/metabolismo , Endometrio , Células del Estroma/metabolismo , Lípidos
10.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743171

RESUMEN

Melatonin is a promising reagent that can improve assisted reproductive technology (ART) outcomes in infertility patients. However, melatonin is not effective for all infertile patients, and it remains unclear for which patients melatonin would be effective. This study examined the effects of melatonin on ART outcomes and examined its mechanisms. Melatonin increased the fertilization rate in patients whose fertilization rates in the previous cycle were less than 50%, but not in patients whose fertilization rates were more than 50% in the previous cycle. Melatonin increased the blastocyst formation rate in patients whose embryo development rates in the previous cycle were less than 50%, but not in patients whose embryo development rates were more than 50% in the previous cycle. To clarify its mechanisms, transcriptome changes by melatonin treatment in granulosa cells (GCs) of the patients were examined by RNA-sequence. Melatonin treatment altered the transcriptomes of GCs of patients with poor ART outcomes so that they were similar to the transcriptomes of patients with good ART outcomes. The altered genes were associated with the inhibition of cell death and T-cell activity, and the activation of steroidogenesis and angiogenesis. Melatonin treatment was effective for patients with poor fertilization rates and poor embryo development rates in the previous ART cycle. Melatonin alters the GCs transcriptome and, thus, their functions, and this could improve the oocyte quality, leading to good ART outcomes.


Asunto(s)
Melatonina , Blastocisto , Desarrollo Embrionario/genética , Femenino , Fertilización , Fertilización In Vitro , Células de la Granulosa , Humanos , Melatonina/farmacología , Oocitos , Transcriptoma
11.
J Biol Chem ; 298(5): 101874, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35358514

RESUMEN

We previously reported that CCAAT/enhancer-binding protein beta (C/EBPß) is the pioneer factor inducing transcription enhancer mark H3K27 acetylation (H3K27ac) in the promoter and enhancer regions of genes encoding insulin-like growth factor-binding protein-1 (IGFBP-1) and prolactin (PRL) and that this contributes to decidualization of human endometrial stromal cells (ESCs). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α; PPARGC1A) is a transcriptional coactivator known to regulate H3K27ac. However, although PGC-1α is expressed in ESCs, the potential role of PGC-1α in mediating decidualization is unclear. Here, we investigated the involvement of PGC-1α in the regulation of decidualization. We incubated ESCs with cAMP to induce decidualization and knocked down PPARGC1A to inhibit cAMP-induced expression of IGFBP-1 and PRL. We found cAMP increased the recruitment of PGC-1α and p300 to C/EBPß-binding sites in the promoter and enhancer regions of IGFBP-1 and PRL, corresponding with increases in H3K27ac. Moreover, PGC-1α knockdown inhibited these increases, suggesting PGC-1α forms a histone-modifying complex with C/EBPß and p300 at these regions. To further investigate the regulation of PGC-1α, we focused on C/EBPß upstream of PGC-1α. We found cAMP increased C/EBPß recruitment to the novel enhancer regions of PPARGC1A. Deletion of these enhancers decreased PGC-1α expression, indicating that C/EBPß upregulates PGC-1α expression by binding to novel enhancer regions. In conclusion, PGC-1α is upregulated by C/EBPß recruitment to novel enhancers and contributes to decidualization by forming a histone-modifying complex with C/EBPß and p300, thereby inducing epigenomic changes in the promoters and enhancers of IGFBP-1 and PRL.


Asunto(s)
Histonas , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Prolactina/genética , Prolactina/metabolismo , Células del Estroma/metabolismo
12.
J Biol Chem ; 297(4): 101150, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34478711

RESUMEN

Human endometrial stromal cells (ESCs) differentiate into decidual cells by the action of progesterone, which is essential for implantation and maintenance of pregnancy. We previously reported that glucose uptake by human ESCs increases during decidualization and that glucose is indispensable for decidualization. Although glucose transporter 1 (GLUT1) is upregulated during decidualization, it remains unclear whether it is involved in glucose uptake. Here, we attempted to determine the role of GLUT1 during decidualization as well as the factors underlying its upregulation. ESCs were incubated with cAMP to induce decidualization. Knockdown of GLUT1 suppressed cAMP-increased glucose uptake and the expressions of specific markers of decidualization, IGF-binding protein-1 (IGFBP-1), and prolactin (PRL). To investigate the regulation of GLUT1 expression, we focused on CCAAT enhancer-binding protein ß (C/EBPß) and Wilms' tumor 1 (WT1) as the upstream transcription factors regulating GLUT1 expression. Knockdown of either C/EBPß or WT1 suppressed cAMP-increased GLUT1 expression and glucose uptake. cAMP treatment also increased the recruitment of C/EBPß and WT1 to the GLUT1 promoter region. Interestingly, cAMP increased the H3K27 acetylation (H3K27ac) and p300 recruitment in the GLUT1 promoter region. Knockdown of C/EBPß or WT1 inhibited these events, indicating that both C/EBPß and WT1 contribute to the increase of H3K27ac by recruiting p300 to the GLUT1 promoter region during decidualization. These findings indicate that GLUT1 is involved in glucose uptake in ESCs during decidualization, thus facilitating the establishment of pregnancy.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Decidua/metabolismo , Epigénesis Genética , Transportador de Glucosa de Tipo 1/biosíntesis , Regulación hacia Arriba , Proteínas WT1/metabolismo , Adulto , Proteína beta Potenciadora de Unión a CCAAT/genética , Femenino , Transportador de Glucosa de Tipo 1/genética , Humanos , Persona de Mediana Edad , Células del Estroma , Proteínas WT1/genética
13.
Reprod Med Biol ; 20(3): 299-304, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34262397

RESUMEN

PURPOSE: We investigate the relationships between oocyte developmental capacity and follicular size of its origin in Japanese women: those undergoing conventional IVF (cIVF) and ICSI, respectively. METHODS: A total of 3377 follicles were punctured separately and were classified into three groups (large, medium, and small) by their diameters. A total of 1482 retrieved oocytes were individually cultured and received cIVF or ICSI. The oocytes receiving ICSI were denuded and the number of mature (MII) oocytes was counted. RESULTS: The oocyte retrieval rates and the proportion of MII oocytes were significantly lower in small follicles than in large follicles. Under cIVF, the fertilization rate was significantly lower in oocytes from small follicles than large follicles. Under ICSI, the fertilization rate for MII oocytes was not significantly related to follicular size. Follicular size was not significantly related to the development potential to blastocyst and pregnancy rate for either the cIVF oocytes or the ICSI oocytes. CONCLUSIONS: Although the fertilization rate by cIVF is low in oocytes from small follicles due to the lower proportion of mature oocytes, their development potential is comparable to that of oocytes from larger follicles if they could be fertilized. Under ICSI using mature oocytes, their development potential is not related to follicular size.

14.
Endocrinology ; 162(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34171084

RESUMEN

The ovulatory luteinizing hormone (LH) surge induces rapid changes of gene expression and cellular functions in granulosa cells (GCs) undergoing luteinization. However, it remains unclear how the changes in genome-wide gene expression are regulated. H3K4me3 histone modifications are involved in the rapid alteration of gene expression. In this study, we investigated genome-wide changes of transcriptome and H3K4me3 status in mouse GCs undergoing luteinization. GCs were obtained from mice treated with equine chorionic gonadotropin (hCG) before, 4 hours, and 12 hours after human chorionic gonadotropin injection. RNA-sequencing identified a number of upregulated and downregulated genes, which could be classified into 8 patterns according to the time-course changes of gene expression. Many genes were transiently upregulated or downregulated at 4 hours after hCG stimulation. Gene Ontology terms associated with these genes included steroidogenesis, ovulation, cumulus-oocyte complex (COC) expansion, angiogenesis, immune system, reactive oxygen species (ROS) metabolism, inflammatory response, metabolism, and autophagy. The cellular functions of DNA repair and cell growth were newly identified as being activated during ovulation. Chromatin immunoprecipitation-sequencing revealed a genome-wide and rapid change in H3K4me3 during ovulation. Integration of transcriptome and H3K4me3 data identified many H3K4me3-associated genes that are involved in steroidogenesis, ovulation, COC expansion, angiogenesis, inflammatory response, immune system, ROS metabolism, lipid and glucose metabolism, autophagy, and regulation of cell size. The present results suggest that genome-wide changes in H3K4me3 after the LH surge are associated with rapid changes in gene expression in GCs, which enables GCs to acquire a lot of cellular functions within a short time that are required for ovulation and luteinization.


Asunto(s)
Células de la Granulosa/metabolismo , Histonas/metabolismo , Ovulación/fisiología , Transcriptoma , Animales , Gonadotropina Coriónica/farmacología , Femenino , Perfilación de la Expresión Génica , Células de la Granulosa/efectos de los fármacos , Código de Histonas/efectos de los fármacos , Código de Histonas/genética , Luteinización/efectos de los fármacos , Luteinización/genética , Luteinización/metabolismo , Hormona Luteinizante/metabolismo , Ratones , Ratones Endogámicos C57BL , Ovulación/genética , Ovulación/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Integración de Sistemas , Transcriptoma/efectos de los fármacos
15.
J Endocrinol ; 251(1): 15-25, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34156346

RESUMEN

Women usually experience body weight gain with aging, which can put them at risk for many chronic diseases. Previous studies indicated that melatonin treatment attenuates body weight gain and abdominal fat deposition in several male animals. However, it is unclear whether melatonin affects female animals in the same way. This study investigated whether long-term melatonin treatment can attenuate body weight gain with aging and, if it does, what the mechanism is. Ten-week-old female ICR mice were given melatonin-containing water (100 µg/mL) or only water until 43 weeks. Melatonin treatment significantly attenuated body weight gain at 23 weeks (control; 57.2 ± 2.0 g vs melatonin; 44.4 ± 3.1 g), 33 weeks (control; 65.4 ± 2.6 g vs melatonin; 52.2 ± 4.2 g) and 43 weeks (control; 66.1 ± 3.2 g vs melatonin; 54.4 ± 2.5 g) without decreasing the amount of food intake. Micro-CT analyses showed that melatonin significantly decreased the deposition of visceral and s.c. fat. These results suggested that melatonin attenuates body weight gain by inhibiting abdominal fat deposition. Metabolome analysis of the liver revealed that melatonin treatment induced a drastic change in the metabolome with the downregulation of 149 metabolites, including the metabolites of glucose and amino acids. Citrate, which serves as a source of de novo lipogenesis, was one of the downregulated metabolites. These results show that long-term melatonin treatment induces drastic changes in metabolism and attenuates body weight gain and fat deposition with aging in female mice.


Asunto(s)
Envejecimiento/fisiología , Antioxidantes/farmacología , Melatonina/farmacología , Aumento de Peso/efectos de los fármacos , Adiposidad/efectos de los fármacos , Animales , Femenino , Ratones , Ratones Endogámicos ICR
16.
Mol Cell Endocrinol ; 520: 111085, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33232782

RESUMEN

We previously reported that H3K27 acetylation (H3K27ac) increases throughout the genome during decidualization of human endometrial stromal cells (ESCs). However, its mechanisms have not been clarified. We also reported that C/EBPß acts as a pioneer factor initiating chromatin remodeling by increasing H3K27ac of IGFBP-1 and PRL promoters. Therefore, C/EBPß may be involved in the genome-wide increase of H3K27ac during decidualization. In this study, we investigated whether C/EBPß causes genome-wide H3K27ac modifications and regulates gene expressions during decidualization. cAMP was used to induce decidualization. Three types of cells (control cells, cAMP-treated cells, and cAMP-treated + C/EBPß-knockdowned cells by siRNA) were generated. Of 4190 genes that were upregulated by cAMP, C/EBPß knockdown inhibited these upregulation in 2239 genes (53.4%), indicating that they are under the regulation of C/EBPß. cAMP increased H3K27ac in 1272 of the 2239 genes. C/EBPß knockdown abolished the increase of H3K27ac in almost all genes (1263 genes, 99.3%), suggesting that C/EBPß can upregulate gene expression by increasing H3K27ac. To investigate how C/EBPß regulates H3K27ac throughout the genome, we tested the hypothesis that C/EBPß binds to its binding regions and recruits cofactors with histone acetyltransferase activities. To do this, we collated our ChIP-sequence data with public ChIP-sequence database of transcription factors, and found that p300 is the most likely cofactor that binds to the H3K27ac-increased-regions with C/EBPß. ChIP-qPCR of several genes confirmed that C/EBPß binds to the target regions, recruits p300, and increases H3K27ac. Our genome-wide analysis revealed that C/EBPß induces H3K27ac throughout the genome and upregulates gene expressions during decidualization by recruiting p300 to the promoters.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Decidua/metabolismo , Endometrio/citología , Genoma Humano , Histonas/metabolismo , Lisina/metabolismo , Regulación hacia Arriba/genética , Acetilación , Adulto , AMP Cíclico/metabolismo , Regulación hacia Abajo/genética , Proteína p300 Asociada a E1A/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Células del Estroma/metabolismo
17.
J Clin Endocrinol Metab ; 105(12)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877504

RESUMEN

PURPOSE: To identify the upstream regulators (URs) involved in the onset and pathogenesis of ovarian endometrioma. METHODS: Recently, a method called Significance-based Modules Integrating the Transcriptome and Epigenome (SMITE) that uses transcriptome data in combination with publicly available data for identifying URs of cellular processes has been developed. Here, we used SMITE with transcriptome data from ovarian endometrioma stromal cells (ovESCs) and eutopic endometrium stromal cells (euESCs) in combination with publicly available gene regulatory network data. To confirm the URs identified by SMITE, we developed a Boolean network simulation to see if correcting aberrant expressions of the identified genes could restore the entire gene expression profile of ovESCs to a profile similar to that of euESCs. We then established euESCs overexpressing the identified gene and characterized them by cell function assays and transcriptome analysis. RESULTS: SMITE identified 12 potential URs in ovarian endometrioma that were confirmed by the Boolean simulation. One of the URs, HOXC8, was confirmed to be overexpressed in ovESCs. HOXC8 overexpression significantly enhanced cell proliferation, migration, adhesion, and fibrotic activities, and altered expression statuses of the genes involved in transforming growth factor (TGF)-ß signaling. HOXC8 overexpression also increased the expression levels of phosphorylated SMAD2/SMAD3. The increased adhesion and fibrosis activities by HOXC8 were significantly inhibited by E-616452, a selective inhibitor of TGF-ß receptor type I kinases. MAIN CONCLUSIONS: Integrated genomic approaches identified HOXC8 as an UR in ovarian endometrioma. The pathological features of ovarian endometrioma including cell proliferation, adhesion, and fibrosis were induced by HOXC8 and its subsequent activation of TGF-ß signaling.


Asunto(s)
Endometriosis/genética , Proteínas de Homeodominio/fisiología , Enfermedades del Ovario/genética , Adulto , Movimiento Celular/genética , Células Cultivadas , Endometriosis/patología , Epigenoma , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genómica/métodos , Proteínas de Homeodominio/genética , Humanos , Persona de Mediana Edad , Enfermedades del Ovario/patología , Integración de Sistemas , Transcriptoma
18.
Reprod Med Biol ; 19(3): 277-285, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32684827

RESUMEN

PURPOSE: To identify the aberrantly expressed long non-coding RNAs (lncRNAs) in ovarian high-grade serous carcinoma (HGSC). METHODS: Total RNA was isolated in HGSC cell lines, ovarian surface epithelial cells, and normal ovaries. Aberrantly expressed lncRNAs in HGSC were identified by PCR array, which analyzes 84 kinds of lncRNAs. To infer their functions, HGSC cell lines with different levels of expression of the identified lncRNAs were established, and then, activities of proliferation, migration, and apoptosis were examined. Expression levels of the identified lncRNAs were also examined in multiple ovarian HGSC tissues. RESULTS: Ten aberrantly expressed lncRNAs, six upregulated and four downregulated, were identified in the HGSC cell lines. The authors established four HGSC cell lines: in two of the cell lines, one of the upregulated lncRNAs was knocked down, and in two other cell lines, one of the downregulated lncRNAs (MEG3 and POU5F1P5) was overexpressed. Migration activities were inhibited in the HGSC cell lines overexpressing MEG3 or POU5F1P5 while there were no differences in proliferation and apoptosis between the established and control cell lines. The four lncRNAs downregulated in the HGSC cell lines were also observed to be downregulated in ovarian HGSC tissues. CONCLUSION: The authors identified four downregulated lncRNAs in ovarian HGSC.

19.
J Biol Chem ; 295(14): 4673-4683, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32098869

RESUMEN

We previously reported that the transcription factor Wilms tumor 1 (WT1) regulates the expression of insulin-like growth factor-binding protein-1 (IGFBP-1) and prolactin (PRL) during decidualization of human endometrial stromal cells (ESCs). However, other roles of WT1 in decidualization remain to be fully clarified. Here, we investigated how WT1 regulates the physiological functions of human ESCs during decidualization. We incubated ESCs isolated from proliferative-phase endometrium with cAMP to induce decidualization, knocked down WT1 with siRNA, and generated three types of treatments (nontreated cells, cAMP-treated cells, and cAMP-treated + WT1-knockdown cells). To identify WT1-regulated genes, we used gene microarrays and compared the transcriptome data obtained among these three treatments. We observed that WT1 up-regulates 121 genes during decidualization, including several genes involved in lipid transport. The WT1 knockdown inhibited lipid accumulation (LA) in the cAMP-induced ESCs. To examine the mechanisms by which WT1 regulates LA, we focused on very low-density lipoprotein receptor (VLDLR), which is involved in lipoprotein uptake. We found that cAMP up-regulates VLDLR and that the WT1 knockdown inhibits it. Results of ChIP assays revealed that cAMP increases the recruitment of WT1 to the promoter region of the VLDLR gene, indicating that WT1 regulates VLDLR expression. Moreover, VLDLR knockdown inhibited cAMP-induced LA, and VLDLR overexpression reverted the suppression of LA caused by the WT1 knockdown. Taken together, our results indicate that WT1 enhances lipid storage by up-regulating VLDLR expression in human ESCs during decidualization.


Asunto(s)
Metabolismo de los Lípidos , Proteínas WT1/metabolismo , Adulto , Células Cultivadas , AMP Cíclico/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Endometrio/citología , Femenino , Regulación de la Expresión Génica , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Persona de Mediana Edad , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores de LDL/antagonistas & inhibidores , Receptores de LDL/genética , Receptores de LDL/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo , Proteínas WT1/antagonistas & inhibidores , Proteínas WT1/genética
20.
Int J Mol Sci ; 21(3)2020 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32046301

RESUMEN

Melatonin is probably produced in all cells but is only secreted by the pineal gland. The pineal secretion of melatonin is determined by the light-dark cycle, and it is only released at night. Melatonin regulates biological rhythms via its receptors located in the suprachiasmatic nuclei of the hypothalamus. Melatonin also has strong antioxidant activities to scavenge free radicals such as reactive oxygen species (ROS). The direct free radical scavenging actions are receptor independent. ROS play an important role in reproductive function including in the ovulatory process. However, excessive ROS can also have an adverse effect on oocytes because of oxidative stress, thereby causing infertility. It is becoming clear that melatonin is located in the ovarian follicular fluid and in the oocytes themselves, which protects these cells from oxidative damage as well as having other beneficial actions in oocyte maturation, fertilization, and embryo development. Trials on humans have investigated the improvement of outcomes of assisted reproductive technology (ART), such as in vitro fertilization and embryo transfer (IVF-ET), by way of administering melatonin to patients suffering from infertility. In addition, clinical research has examined melatonin as an anti-aging molecule via its antioxidative actions, and its relationship with the aging diseases, e.g., Alzheimer's and Parkinson's disease, is also underway. Melatonin may also reduce ovarian aging, which is a major issue in assisted reproductive technology. This review explains the relationship between melatonin and human reproductive function, as well as the clinical applications expected to improve the outcomes of assisted reproductive technology such as IVF, while also discussing possibilities for melatonin in preventing ovarian aging.


Asunto(s)
Envejecimiento , Melatonina/fisiología , Ovario/fisiología , Técnicas Reproductivas Asistidas , Animales , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA