Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Asunto principal
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1199187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577436

RESUMEN

Herbivorous insects require an active lignocellulolytic microbiome to process their diet. Stick insects (phasmids) are common in the tropics and display a cosmopolitan host plant feeding preference. The microbiomes of social insects are vertically transmitted to offspring, while for solitary species, such as phasmids, it has been assumed that microbiomes are acquired from their diet. This study reports the characterization of the gut microbiome for the Gray's Malayan stick insect, Lonchodes brevipes, reared on native and introduced species of host plants and compared to the microbiome of the host plant and surrounding soil to gain insight into possible sources of recruitment. Clear differences in the gut microbiome occurred between insects fed on native and exotic plant diets, and the native diet displayed a more species-rich fungal microbiome. While the findings suggest that phasmids may be capable of adapting their gut microbiome to changing diets, it is uncertain whether this may lead to any change in dietary efficiency or organismal fitness. Further insight in this regard may assist conservation and management decision-making.

2.
Proc Biol Sci ; 289(1972): 20212665, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35382598

RESUMEN

Seasonal plasticity in male courtship in Bicyclus anynana butterflies is due to variation in levels of the steroid hormone 20E (20-hydroxyecdysone) during pupation. Wet season (WS) males have high levels of 20E and become active courters. Dry season (DS) males have lower levels of 20E and reduced courtship rates. However, WS courtship rates can be achieved if DS male pupae are injected with 20E at 30% of pupation. Here, we investigated the genes involved in male courtship plasticity and examined whether 20E plays an organizational role in the pupal brain that later influences the sexual behaviour of adults. We show that DS pupal brains have a sevenfold upregulation of the yellow gene relative to the WS brains, and that knocking out yellow leads to increased male courtship. We find that injecting 20E into DS pupa reduced yellow expression although not significantly. Our results show that yellow is a repressor of the neural circuity for male courtship behaviour in B. anynana. 20E levels experienced during pupation could play an organizational role during pupal brain development by regulating yellow expression, however, other factors might also be involved. Our findings are in striking contrast to Drosophila where yellow is required for male courtship.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/fisiología , Cortejo , Masculino , Pupa/genética , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA