Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Drug Discov Today ; 27(1): 246-256, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34438075

RESUMEN

Bromodomain-containing protein 4 (BRD4) is emerging as a therapeutic target that acts synergistically with other targets of small-molecule drugs in cancer. Therefore, the discovery of potential new dual-target inhibitors of BRD4 may be a promising strategy for cancer therapy. In this review, we highlight a series of strategies to design therapeutic dual-target inhibitors of BRD4 that focus on the synergistic functions of this protein. Drug combinations that exploit synthetic lethality, protein-protein interactions, functional complementarity, and blocking of resistance mechanisms could ultimately overcome the barriers inherent to the development of BRD4 inhibitors as future cancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular , Diseño de Fármacos/métodos , Terapia Molecular Dirigida , Neoplasias , Factores de Transcripción , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Humanos , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Relación Estructura-Actividad , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
2.
Cell Prolif ; 54(12): e13135, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34632655

RESUMEN

OBJECTIVES: Autophagy, a highly conserved lysosomal degradation process in eukaryotic cells, has been widely reported closely related to the progression of many types of human cancers, including LGG; however, the intricate relationship between autophagy and LGG remains to be clarified. MATERIALS AND METHODS: Multi-omics methods were used to integrate omics data to determine potential autophagy regulators in LGG. The expression of ZFP36L2 and RAB13 in SW1088 cells was experimentally manipulated using cDNAs and small interfering RNAs (siRNA). RT-qPCR detects RNAi gene knockout and cDNA overexpression efficiency. The expression levels of proteins in SW1088 cells were evaluated using Western blot analysis and immunofluorescence analysis. Homology modelling and molecular docking were used to identify compounds from Multi-Traditional Chinese Medicine (TCM) Databases. The apoptosis ratios were determined by flow cytometry analysis of Annexin-V/PI double staining. We detect the number of autophagosomes by GFP-MRFP-LC3 plasmid transfection to verify the process of autophagy flow. RESULTS: We integrated various omics data from LGG, including EXP, MET and CNA data, with the SNF method and the LASSO algorithm, and identified ZFP36L2 and RAB13 as positive regulators of autophagy, which are closely related to the core autophagy regulators. Both transcription level and protein expression level of the four autophagy regulators, including ULK1, FIP200, ATG16L1 and ATG2B, and LC3 puncta were increased by ZFP36L2 and RAB13 overexpression. In addition, RAB13 participates in autophagy through ATG2B, FIP200, ULK1, ATG16L1 and Beclin-1. Finally, we screened multi-TCM databases and identified gallic acid as a novel potential RAB13 inhibitor, which was confirmed to negatively regulate autophagy as well as to induce cell death in SW1088 cells. CONCLUSION: Our study identified the key autophagic regulators ZFP36L2 and Rab13 in LGG progression, and demonstrated that gallic acid is a small molecular inhibitor of RAB13, which negatively regulates autophagy and provides a possible small molecular medicine for the subsequent treatment of LGG.


Asunto(s)
Autofagia , Bases de Datos Factuales , Glioma , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Proteínas de Unión al GTP rab , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Glioma/tratamiento farmacológico , Glioma/enzimología , Humanos , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Proteínas de Unión al GTP rab/metabolismo
3.
Front Pharmacol ; 12: 748149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512368

RESUMEN

Natural products are well-characterized to have pharmacological or biological activities that can be of therapeutic benefits for cancer therapy, which also provide an important source of inspiration for discovery of potential novel small-molecule drugs. In the past three decades, accumulating evidence has revealed that natural products can modulate a series of key autophagic signaling pathways and display therapeutic effects in different types of human cancers. In this review, we focus on summarizing some representative natural active compounds, mainly including curcumin, resveratrol, paclitaxel, Bufalin, and Ursolic acid that may ultimately trigger cancer cell death through the regulation of some key autophagic signaling pathways, such as RAS-RAF-MEK-ERK, PI3K-AKT-mTOR, AMPK, ULK1, Beclin-1, Atg5 and p53. Taken together, these inspiring findings would shed light on exploiting more natural compounds as candidate small-molecule drugs, by targeting the crucial pathways of autophagy for the future cancer therapy.

4.
J Med Chem ; 64(13): 8870-8883, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34162208

RESUMEN

Eukaryotic elongation factor 2 kinase (eEF2K), a member of the atypical protein kinase family of alpha-kinases, is well-known as a negative regulator of protein synthesis by phosphorylating eEF2. Notably, eEF2K functions as a key regulator of several cellular processes, leading to tumorigenesis. To date, some small-molecule compounds have been reported as potential eEF2K inhibitors in cancer drug discovery. However, an ideal targeted drug design still faces huge challenges. Alternatively, other design strategies, such as repurposed drugs, dual-target drugs, and drug combination strategies, provide insights into the improvement of cancer treatment. Here, we summarize the crucial eEF2K-modulating pathways in cancer, including AMPK, REDD1, and Src. Moreover, we discuss the inhibition of eEF2K with single-target inhibitors, repurposed drugs, dual-target inhibitors, drug combination strategies, and other emerging technologies for therapeutic purposes. Together, these inspiring findings provide insights into a promising strategy for inhibiting eEF2K with small-molecule compounds to improve potential cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Quinasa del Factor 2 de Elongación/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química
5.
Pharmacol Res ; 173: 105702, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34102228

RESUMEN

Epigenetics mainly refers to covalent modifications to DNA or histones without affecting genomes, which ultimately lead to phenotypic changes in cells or organisms. Given the abundance of regulatory targets in epigenetic pathways and their pivotal roles in tumorigenesis and drug resistance, the development of epigenetic drugs holds a great promise for the current cancer therapy. However, lack of potent, selective, and clinically tractable small-molecule compounds makes the strategy to target cancer epigenetic pathways still challenging. Therefore, this review focuses on epigenetic pathways, small molecule inhibitors targeting DNA methyltransferase (DNMT) and small molecule inhibitors targeting histone modification (the main regulatory targets are histone acetyltransferases (HAT), histone deacetylases (HDACs) and histone methyltransferases (HMTS)), as well as the combination strategies of the existing epigenetic therapeutic drugs and more new therapies to improve the efficacy, which will shed light on a new clue on discovery of more small-molecule drugs targeting cancer epigenetic pathways as promising strategies in the future.


Asunto(s)
Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Animales , Metilasas de Modificación del ADN/antagonistas & inhibidores , Epigénesis Genética , Histonas/metabolismo , Humanos , Resultado del Tratamiento
6.
Acta Pharm Sin B ; 11(1): 156-180, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33532187

RESUMEN

This study was aimed to design the first dual-target small-molecule inhibitor co-targeting poly (ADP-ribose) polymerase-1 (PARP1) and bromodomain containing protein 4 (BRD4), which had important cross relation in the global network of breast cancer, reflecting the synthetic lethal effect. A series of new BRD4 and PARP1 dual-target inhibitors were discovered and synthesized by fragment-based combinatorial screening and activity assays that together led to the chemical optimization. Among these compounds, 19d was selected and exhibited micromole enzymatic potencies against BRD4 and PARP1, respectively. Compound 19d was further shown to efficiently modulate the expression of BRD4 and PARP1. Subsequently, compound 19d was found to induce breast cancer cell apoptosis and stimulate cell cycle arrest at G1 phase. Following pharmacokinetic studies, compound 19d showed its antitumor activity in breast cancer susceptibility gene 1/2 (BRCA1/2) wild-type MDA-MB-468 and MCF-7 xenograft models without apparent toxicity and loss of body weight. These results together demonstrated that a highly potent dual-targeted inhibitor was successfully synthesized and indicated that co-targeting of BRD4 and PARP1 based on the concept of synthetic lethality would be a promising therapeutic strategy for breast cancer.

7.
Front Mol Biosci ; 8: 790172, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34988120

RESUMEN

Fam20C, a typical member of Fam20 family, has been well-known as a Golgi casein kinase, which is closely associated with Raine Syndrome (RS). It can phosphorylate many secreted proteins and multiple substrates, and thereby plays a crucial role in biological functions. More importantly, Fam20C has also been found to enhance the metastasis of several types of human cancers, such as breast cancer, indicating that Fam20C may be a promising therapeutic target. Accordingly, some small-molecule inhibitors of Fam20C have been reported in cancer. Taken together, these inspiring findings would shed new light on exploiting Fam20C as a potential therapeutic target and inhibiting Fam20C with small-molecule compounds would provide a clue on discovery of more candidate small-molecule drugs for fighting with human diseases.

8.
Theranostics ; 10(19): 8880-8902, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754285

RESUMEN

Gastric cancer (GC) is currently the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs), transcriptional products with more than 200 nucleotides, are not as well-characterized as protein-coding RNAs. Accumulating evidence has recently revealed that maladjustments of diverse lncRNAs may play key roles in multiple genetic and epigenetic phenomena in GC, affecting all aspects of cellular homeostasis, such as proliferation, migration, and stemness. However, the full extent of their functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets, future research should be focused on unravelling the intricate relationships between lncRNAs and GC that can be translated from bench to clinic. Here, we summarized the state-of-the-art advances in lncRNAs and their biological functions in GC, and we further discuss their potential diagnostic and therapeutic roles. We aim to shed light on the interrelationships between lncRNAs and GC with respect to their potential therapeutic applications. With better understanding of these relationships, the biological functions of lncRNAs in GC development will be exploitable, and promising new strategies developed for the prevention and treatment of GC.


Asunto(s)
Biomarcadores de Tumor/genética , ARN Largo no Codificante/genética , Neoplasias Gástricas/genética , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Medicina de Precisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...