Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38949928

RESUMEN

Brain-computer interfaces (BCIs) provide a communication interface between the brain and external devices and have the potential to restore communication and control in patients with neurological injury or disease. For the invasive BCIs, most studies recruited participants from hospitals requiring invasive device implantation. Three widely used clinical invasive devices that have the potential for BCIs applications include surface electrodes used in electrocorticography (ECoG) and depth electrodes used in Stereo-electroencephalography (SEEG) and deep brain stimulation (DBS). This review focused on BCIs research using surface (ECoG) and depth electrodes (including SEEG, and DBS electrodes) for movement decoding on human subjects. Unlike previous reviews, the findings presented here are from the perspective of the decoding target or task. In detail, five tasks will be considered, consisting of the kinematic decoding, kinetic decoding,identification of body parts, dexterous hand decoding, and motion intention decoding. The typical studies are surveyed and analyzed. The reviewed literature demonstrated a distributed motor-related network that spanned multiple brain regions. Comparison between surface and depth studies demonstrated that richer information can be obtained using surface electrodes. With regard to the decoding algorithms, deep learning exhibited superior performance using raw signals than traditional machine learning algorithms. Despite the promising achievement made by the open-loop BCIs, closed-loop BCIs with sensory feedback are still in their early stage, and the chronic implantation of both ECoG surface and depth electrodes has not been thoroughly evaluated.


Asunto(s)
Interfaces Cerebro-Computador , Electrocorticografía , Electrodos Implantados , Movimiento , Humanos , Electrocorticografía/instrumentación , Electrocorticografía/métodos , Movimiento/fisiología , Estimulación Encefálica Profunda/instrumentación , Fenómenos Biomecánicos , Electroencefalografía/métodos , Electroencefalografía/instrumentación , Electrodos , Corteza Motora/fisiología , Mano/fisiología , Algoritmos
2.
Brain ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869168

RESUMEN

Control of actions allows adaptive, goal-directed behaviour. The basal ganglia, including the subthalamic nucleus, are thought to play a central role in dynamically controlling actions through recurrent negative feedback loops with the cerebral cortex. Here, we summarize recent translational studies that used deep brain stimulation to record neural activity from and apply electrical stimulation to the subthalamic nucleus in people with Parkinson's disease. These studies have elucidated spatial, spectral and temporal features of the neural mechanisms underlying the controlled delay of actions in cortico-subthalamic networks and demonstrated their causal effects on behaviour in distinct processing windows. While these mechanisms have been conceptualized as control signals for suppressing impulsive response tendencies in conflict tasks and as decision threshold adjustments in value-based and perceptual decisions, we propose a common framework linking decision-making, cognition and movement. Within this framework subthalamic deep brain stimulation can lead to suboptimal choices by reducing the time that patients take for deliberation before committing to an action. However, clinical studies have consistently shown that the occurrence of impulse control disorders is reduced, not increased, after subthalamic deep brain stimulation surgery. This apparent contradiction can be reconciled when recognizing the multifaceted nature of impulsivity, its underlying mechanisms and modulation by treatment. While subthalamic deep brain stimulation renders patients susceptible to making decisions without proper forethought, this can be disentangled from effects related to dopamine comprising sensitivity to benefits vs. costs, reward delay aversion and learning from outcomes. Alterations in these dopamine-mediated mechanisms are thought to underlie the development of impulse control disorders, and can be relatively spared with reduced dopaminergic medication after subthalamic deep brain stimulation. Together, results from studies using deep brain stimulation as an experimental tool have improved our understanding of action control in the human brain and have important implications for treatment of patients with Neurological disorders.

3.
medRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38883720

RESUMEN

Background: Neuropsychiatric symptoms are common and disabling in Parkinson's disease (PD), with troublesome anxiety occurring in one-third of patients. Management of anxiety in PD is challenging, hampered by insufficient insight into underlying mechanisms, lack of objective anxiety measurements, and largely ineffective treatments.In this study, we assessed the intracranial neurophysiological correlates of anxiety in PD patients treated with deep brain stimulation (DBS) in the laboratory and at home. We hypothesized that low-frequency (theta-alpha) activity would be associated with anxiety. Methods: We recorded local field potentials (LFP) from the subthalamic nucleus (STN) or the globus pallidus pars interna (GPi) DBS implants in three PD cohorts: 1) patients with recordings (STN) performed in hospital at rest via perioperatively externalized leads, without active stimulation, both ON or OFF dopaminergic medication; 2) patients with recordings (STN or GPi) performed at home while resting, via a chronically implanted commercially available sensing-enabled neurostimulator (Medtronic Percept™ device), ON dopaminergic medication, with stimulation both ON or OFF; 3) patients with recordings performed at home while engaging in a behavioral task via STN and GPi leads and electrocorticography paddles (ECoG) over premotor cortex connected to an investigational sensing-enabled neurostimulator, ON dopaminergic medication, with stimulation both ON or OFF.Trait anxiety was measured with validated clinical scales in all participants, and state anxiety was measured with momentary assessment scales at multiple time points in the two at-home cohorts. Power in theta (4-8 Hz) and alpha (8-12 Hz) ranges were extracted from the LFP recordings, and their relation with anxiety ratings was assessed using linear mixed-effects models. Results: In total, 33 PD patients (59 hemispheres) were included. Across three independent cohorts, with stimulation OFF, basal ganglia theta power was positively related to trait anxiety (all p<0.05). Also in a naturalistic setting, with individuals at home at rest with stimulation and medication ON, basal ganglia theta power was positively related to trait anxiety (p<0.05). This relationship held regardless of the hemisphere and DBS target. There was no correlation between trait anxiety and premotor cortical theta-alpha power. There was no within-patient association between basal ganglia theta-alpha power and state anxiety. Conclusion: We showed that basal ganglia theta activity indexes trait anxiety in PD. Our data suggest that theta could be a possible physiomarker of neuropsychiatric symptoms and specifically of anxiety in PD, potentially suitable for guiding advanced DBS treatment tailored to the individual patient's needs, including non-motor symptoms.

4.
Neurobiol Dis ; 199: 106565, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880431

RESUMEN

Subthalamic deep brain stimulation (DBS) robustly generates high-frequency oscillations known as evoked resonant neural activity (ERNA). Recently the importance of ERNA has been demonstrated through its ability to predict the optimal DBS contact in the subthalamic nucleus in patients with Parkinson's disease. However, the underlying mechanisms of ERNA are not well understood, and previous modelling efforts have not managed to reproduce the wealth of published data describing the dynamics of ERNA. Here, we aim to present a minimal model capable of reproducing the characteristics of the slow ERNA dynamics published to date. We make biophysically-motivated modifications to the Kuramoto model and fit its parameters to the slow dynamics of ERNA obtained from data. Our results demonstrate that it is possible to reproduce the slow dynamics of ERNA (over hundreds of seconds) with a single neuronal population, and, crucially, with vesicle depletion as one of the key mechanisms behind the ERNA frequency decay in our model. We further validate the proposed model against experimental data from Parkinson's disease patients, where it captures the variations in ERNA frequency and amplitude in response to variable stimulation frequency, amplitude, and to stimulation pulse bursting. We provide a series of predictions from the model that could be the subject of future studies for further validation.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38724231

RESUMEN

BACKGROUND: Sleep fragmentation is a persistent problem throughout the course of Parkinson's disease (PD). However, the related neurophysiological patterns and the underlying mechanisms remained unclear. METHOD: We recorded subthalamic nucleus (STN) local field potentials (LFPs) using deep brain stimulation (DBS) with real-time wireless recording capacity from 13 patients with PD undergoing a one-night polysomnography recording, 1 month after DBS surgery before initial programming and when the patients were off-medication. The STN LFP features that characterised different sleep stages, correlated with arousal and sleep fragmentation index, and preceded stage transitions during N2 and REM sleep were analysed. RESULTS: Both beta and low gamma oscillations in non-rapid eye movement (NREM) sleep increased with the severity of sleep disturbance (arousal index (ArI)-betaNREM: r=0.9, p=0.0001, sleep fragmentation index (SFI)-betaNREM: r=0.6, p=0.0301; SFI-gammaNREM: r=0.6, p=0.0324). We next examined the low-to-high power ratio (LHPR), which was the power ratio of theta oscillations to beta and low gamma oscillations, and found it to be an indicator of sleep fragmentation (ArI-LHPRNREM: r=-0.8, p=0.0053; ArI-LHPRREM: r=-0.6, p=0.0373; SFI-LHPRNREM: r=-0.7, p=0.0204; SFI-LHPRREM: r=-0.6, p=0.0428). In addition, long beta bursts (>0.25 s) during NREM stage 2 were found preceding the completion of transition to stages with more cortical activities (towards Wake/N1/REM compared with towards N3 (p<0.01)) and negatively correlated with STN spindles, which were detected in STN LFPs with peak frequency distinguishable from long beta bursts (STN spindle: 11.5 Hz, STN long beta bursts: 23.8 Hz), in occupation during NREM sleep (ß=-0.24, p<0.001). CONCLUSION: Features of STN LFPs help explain neurophysiological mechanisms underlying sleep fragmentations in PD, which can inform new intervention for sleep dysfunction. TRIAL REGISTRATION NUMBER: NCT02937727.

6.
Nat Commun ; 15(1): 3166, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38605062

RESUMEN

Increasing evidence suggests a considerable role of pre-movement beta bursts for motor control and its impairment in Parkinson's disease. However, whether beta bursts occur during precise and prolonged movements and if they affect fine motor control remains unclear. To investigate the role of within-movement beta bursts for fine motor control, we here combine invasive electrophysiological recordings and clinical deep brain stimulation in the subthalamic nucleus in 19 patients with Parkinson's disease performing a context-varying task that comprised template-guided and free spiral drawing. We determined beta bursts in narrow frequency bands around patient-specific peaks and assessed burst amplitude, duration, and their immediate impact on drawing speed. We reveal that beta bursts occur during the execution of drawing movements with reduced duration and amplitude in comparison to rest. Exclusively when drawing freely, they parallel reductions in acceleration. Deep brain stimulation increases the acceleration around beta bursts in addition to a general increase in drawing velocity and improvements of clinical function. These results provide evidence for a diverse and task-specific role of subthalamic beta bursts for fine motor control in Parkinson's disease; suggesting that pathological beta bursts act in a context dependent manner, which can be targeted by clinical deep brain stimulation.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Ritmo beta/fisiología , Movimiento/fisiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-38641368

RESUMEN

BACKGROUND: Rapid eye movement (REM) sleep behaviour disorder (RBD) is one of the most common sleep problems and represents a key prodromal marker in Parkinson's disease (PD). It remains unclear whether and how basal ganglia nuclei, structures that are directly involved in the pathology of PD, are implicated in the occurrence of RBD. METHOD: Here, in parallel with whole-night video polysomnography, we recorded local field potentials from two major basal ganglia structures, the globus pallidus internus and subthalamic nucleus, in two cohorts of patients with PD who had varied severity of RBD. Basal ganglia oscillatory patterns during RBD and REM sleep without atonia were analysed and compared with another age-matched cohort of patients with dystonia that served as controls. RESULTS: We found that beta power in both basal ganglia nuclei was specifically elevated during REM sleep without atonia in patients with PD, but not in dystonia. Basal ganglia beta power during REM sleep positively correlated with the extent of atonia loss, with beta elevation preceding the activation of chin electromyogram activities by ~200 ms. The connectivity between basal ganglia beta power and chin muscular activities during REM sleep was significantly correlated with the clinical severity of RBD in PD. CONCLUSIONS: These findings support that basal ganglia activities are associated with if not directly contribute to the occurrence of RBD in PD. Our study expands the understanding of the role basal ganglia played in RBD and may foster improved therapies for RBD by interrupting the basal ganglia-muscular communication during REM sleep in PD.

8.
Brain Stimul ; 17(3): 501-509, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38636820

RESUMEN

BACKGROUND: Gait impairment has a major impact on quality of life in patients with Parkinson's disease (PD). It is believed that basal ganglia oscillatory activity at ß frequencies (15-30 Hz) may contribute to gait impairment, but the precise dynamics of this oscillatory activity during gait remain unclear. Additionally, auditory cues are known to lead to improvements in gait kinematics in PD. If the neurophysiological mechanisms of this cueing effect were better understood they could be leveraged to treat gait impairments using adaptive Deep Brain Stimulation (aDBS) technologies. OBJECTIVE: We aimed to characterize the dynamics of subthalamic nucleus (STN) oscillatory activity during stepping movements in PD and to establish the neurophysiological mechanisms by which auditory cues modulate gait. METHODS: We studied STN local field potentials (LFPs) in eight PD patients while they performed stepping movements. Hidden Markov Models (HMMs) were used to discover transient states of spectral activity that occurred during stepping with and without auditory cues. RESULTS: The occurrence of low and high ß bursts was suppressed during and after auditory cues. This manifested as a decrease in their fractional occupancy and state lifetimes. Interestingly, α transients showed the opposite effect, with fractional occupancy and state lifetimes increasing during and after auditory cues. CONCLUSIONS: We show that STN oscillatory activity in the α and ß frequency bands are differentially modulated by gait-promoting oscillatory cues. These findings suggest that the enhancement of α rhythms may be an approach for ameliorating gait impairments in PD.


Asunto(s)
Señales (Psicología) , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Núcleo Subtalámico/fisiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estimulación Encefálica Profunda/métodos , Estimulación Acústica/métodos , Marcha/fisiología , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Ritmo beta/fisiología
9.
Neurobiol Dis ; 197: 106519, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38685358

RESUMEN

Neural oscillations are critical to understanding the synchronisation of neural activities and their relevance to neurological disorders. For instance, the amplitude of beta oscillations in the subthalamic nucleus has gained extensive attention, as it has been found to correlate with medication status and the therapeutic effects of continuous deep brain stimulation in people with Parkinson's disease. However, the frequency stability of subthalamic nucleus beta oscillations, which has been suggested to be associated with dopaminergic information in brain states, has not been well explored. Moreover, the administration of medicine can have inverse effects on changes in frequency and amplitude. In this study, we proposed a method based on the stationary wavelet transform to quantify the amplitude and frequency stability of subthalamic nucleus beta oscillations and evaluated the method using simulation and real data for Parkinson's disease patients. The results suggest that the amplitude and frequency stability quantification has enhanced sensitivity in distinguishing pathological conditions in Parkinson's disease patients. Our quantification shows the benefit of combining frequency stability information with amplitude and provides a new potential feedback signal for adaptive deep brain stimulation.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Humanos , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Ritmo beta/fisiología , Ritmo beta/efectos de los fármacos , Antiparkinsonianos/uso terapéutico , Análisis de Ondículas
10.
Front Hum Neurosci ; 18: 1320806, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450221

RESUMEN

The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9-11, 2023 in Gainesville, Florida with the theme of "Pushing the Forefront of Neuromodulation". The keynote speaker was Dr. Nico Dosenbach from Washington University in St. Louis, Missouri. He presented his research recently published in Nature inn a collaboration with Dr. Evan Gordon to identify and characterize the somato-cognitive action network (SCAN), which has redefined the motor homunculus and has led to new hypotheses about the integrative networks underpinning therapeutic DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers, and researchers (from industry and academia) can freely discuss current and emerging DBS technologies, as well as logistical and ethical issues facing the field. The group estimated that globally more than 263,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: cutting-edge translational neuromodulation, cutting-edge physiology, advances in neuromodulation from Europe and Asia, neuroethical dilemmas, artificial intelligence and computational modeling, time scales in DBS for mood disorders, and advances in future neuromodulation devices.

12.
Int J Immunogenet ; 51(2): 72-80, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38196067

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disease which is closely related to genetic background. Single-nucleotide polymorphisms (SNPs) have been found to play an important role in the development of RA. This study intends to investigate the links between gene polymorphisms in the interleukin-23 receptor (IL23R) and interleukin 17A (IL17A) and susceptibility to RA in the Western Chinese Han population. Four SNPs (rs6693831 T > C, rs1884444 G > T, and rs7517847 T > G in IL23R gene, and rs2275913 G > A in IL17A gene) were genotyped in 246 RA patients and 362 healthy controls by high resolution melting analysis. The comparative analyses among genotype distributions, clinical indicators, and IL-17A and IL-23R levels in RA patients were also performed. The study revealed that the SNP rs6693831 and rs1884444 of IL23R had a significant association with RA susceptibility. The frequencies of rs6693831 genotype CC and allele C were significantly higher in the RA group and associated with higher RA risk compared with genotype TT and allele T (OR = 7.797, 95% confidence interval [CI] = 4.072-14.932 and OR = 5.984, 95%CI = 3.190-11.224, respectively). The TT genotype of rs1884444 appeared to decrease the RA risk compared with the GG genotype (OR = .251, 95%CI = .118-.536). The genotype CC and allele C of rs6693831 and the genotype GG and allele G of rs1884444 may be risk factors for RA. IL23R gene polymorphisms may be involved in the risk of RA susceptibility in the Western Chinese Han population.


Asunto(s)
Artritis Reumatoide , Predisposición Genética a la Enfermedad , Humanos , Genotipo , Artritis Reumatoide/genética , Polimorfismo de Nucleótido Simple , China , Interleucina-23/genética , Estudios de Casos y Controles , Frecuencia de los Genes
13.
Artículo en Inglés | MEDLINE | ID: mdl-37548140

RESUMEN

Atherosclerosis is a systemic pathophysiological condition contributing to the development of majority of polyvascular diseases. Nanomedicine is a novel and rapidly developing science. Due to their small size, nanoparticles are freely transported in vasculature, and have been widely employed as tools in analytical imaging techniques. Furthermore, the application of nanoparticles also allows target intervention, such as drug delivery and tissue engineering regenerative methods, in the management of major vascular diseases. Therefore, by summarizing the physical and chemical characteristics of common nanoparticles used in diagnosis and treatment of vascular diseases, we discuss the details of these applications from cellular, molecular, and in vivo perspectives in this review. Furthermore, we also summarize the status and challenges of the application of nanoparticles in clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Asunto(s)
Nanopartículas , Nanoestructuras , Enfermedades Vasculares , Humanos , Nanotecnología/métodos , Nanomedicina/métodos , Sistemas de Liberación de Medicamentos , Nanoestructuras/uso terapéutico , Nanopartículas/uso terapéutico , Nanopartículas/química , Enfermedades Vasculares/terapia
14.
Stereotact Funct Neurosurg ; 102(1): 40-54, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38086346

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is a highly efficient, evidence-based therapy to alleviate symptoms and improve quality of life in movement disorders such as Parkinson's disease, essential tremor, and dystonia, which is also being applied in several psychiatric disorders, such as obsessive-compulsive disorder and depression, when they are otherwise resistant to therapy. SUMMARY: At present, DBS is clinically applied in the so-called open-loop approach, with fixed stimulation parameters, irrespective of the patients' clinical state(s). This approach ignores the brain states or feedback from the central nervous system or peripheral recordings, thus potentially limiting its efficacy and inducing side effects by stimulation of the targeted networks below or above the therapeutic level. KEY MESSAGES: The currently emerging closed-loop (CL) approaches are designed to adapt stimulation parameters to the electrophysiological surrogates of disease symptoms and states. CL-DBS paves the way for adaptive personalized DBS protocols. This review elaborates on the perspectives of the CL technology and discusses its opportunities as well as its potential pitfalls for both clinical and research use in neuropsychiatric disorders.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Mentales , Enfermedad de Parkinson , Humanos , Estimulación Encefálica Profunda/métodos , Calidad de Vida , Encéfalo , Trastornos Mentales/terapia , Enfermedad de Parkinson/terapia
15.
CNS Neurosci Ther ; 30(6): e14559, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38115730

RESUMEN

BACKGROUND: The management of patients with disorders of consciousness (DOC) presents substantial challenges in clinical practice. Deep brain stimulation (DBS) has emerged as a potential therapeutic approach, but the lack of standardized regulatory parameters for DBS in DOC hinders definitive conclusions. OBJECTIVE: This comprehensive review aims to provide a detailed summary of the current issues concerning patient selection, target setting, and modulation parameters in clinical studies investigating the application of DBS for DOC patients. METHODS: A meticulous systematic analysis of the literatures was conducted, encompassing articles published from 1968 to April 2023, retrieved from reputable databases (PubMed, Embase, Medline, and Web of Science). RESULTS: The systematic analysis of 21 eligible articles, involving 146 patients with DOC resulting from acquired brain injury or other disorders, revealed significant insights. The most frequently targeted regions were the Centromedian-parafascicular complex (CM-pf) nuclei and central thalamus (CT), both recognized for their role in regulating consciousness. However, other targets have also been explored in different studies. The stimulation frequency was predominantly set at 25 or 100 Hz, with pulse width of 120 µs, and voltages ranged from 0 to 4 V. These parameters were customized based on individual patient responses and evaluations. The overall clinical efficacy rate in all included studies was 39.7%, indicating a positive effect of DBS in a subset of DOC patients. Nonetheless, the assessment methods, follow-up durations, and outcome measures varied across studies, potentially contributing to the variability in reported efficacy rates. CONCLUSION: Despite the challenges arising from the lack of standardized parameters, DBS shows promising potential as a therapeutic option for patients with DOC. However, there still remains the need for standardized protocols and assessment methods, which are crucial to deepen the understanding and optimizing the therapeutic potential of DBS in this specific patient population.


Asunto(s)
Trastornos de la Conciencia , Estimulación Encefálica Profunda , Estimulación Encefálica Profunda/métodos , Humanos , Trastornos de la Conciencia/terapia
16.
Mov Disord ; 39(2): 424-428, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38111224

RESUMEN

BACKGROUND: Transcutaneous vagus nerve stimulation (VNS) showed early evidence of efficacy for the gait treatment of Parkinson's disease (PD). OBJECTIVES: Providing data on neurophysiological and clinical effects of transauricular VNS (taVNS). METHODS: Ten patients with recording deep brain stimulation (DBS) have been enrolled in a within participant design pilot study, double-blind crossover sham-controlled trial of taVNS. Subthalamic local field potentials (ß band power), Unified Parkinson's Disease Rating Scales (UPDRS), and a digital timed-up-and-go test (TUG) were measured and compared with real versus sham taVNS during medication-off/DBS-OFF condition. RESULTS: The left taVNS induced a reduction of the total ß power in the contralateral (ie, right) subthalamic nucleus and an improvement of TUG time, speed, and variability. The taVNS-induced ß reduction correlated with the improvement of gait speed. No major clinical changes were observed at UPDRS. CONCLUSIONS: taVNS is a promising strategy for the management of PD gait, deserving prospective trials of chronic neuromodulation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Estimulación del Nervio Vago , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Estudios Prospectivos , Proyectos Piloto , Equilibrio Postural , Estudios de Tiempo y Movimiento , Marcha , Resultado del Tratamiento
17.
Artículo en Inglés | MEDLINE | ID: mdl-38082626

RESUMEN

Although Freezing of gait (FOG) is one of the most frustrating phenomena for people with Parkinson's Disease (PD), especially in their advanced stage, it is one of the least explained syndromes. The current studies only showed beta oscillations existed in frontal cortex-basal ganglia networks. Further studies need to be carried out. However, simultaneously recording neuro-electrophysiologic signals during walking is always a challenge, especially for Electroencephalogram (EEG) and Local Field Potential (LFP). This paper demonstrated a Virtual Reality (VR) based system which can trigger FOG and record biological signals at the same time. Moreover, the utilisation of VR will significantly decrease space requirements. It will provide a safer and more convenient evaluation environment for future participants. One participant with PD helped to validate the feasibility of the system. The result showed that both EEG and LFP could be recorded at the same time with trigger markers. This system design can be used to trigger freezing episodes in the controlled environment, differentiate subtypes of gait difficulties, and identify neural signatures associated with freezing episodes.Clinical relevance - This paper proposed a VR-based comprehensive FOG neuro-electrophysiologic evaluation system for people with PD. It had the advantages of minimum space requirement and wireless LFP data collection without externalised leads. This paper was to indicate a larger study which would formally recruit larger populations with PD and FOG. Future studies would explore FOG-related brain network coherence.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Realidad Virtual , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Trastornos Neurológicos de la Marcha/diagnóstico , Trastornos Neurológicos de la Marcha/etiología , Marcha/fisiología , Caminata/fisiología
18.
J Adv Res ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38042287

RESUMEN

INTRODUCTION: Type 1 diabetes (T1D) is a complex disorder influenced by genetic and environmental factors. The gut microbiome, the serum metabolome, and the serum lipidome have been identified as key environmental factors contributing to the pathophysiological mechanisms of T1D. OBJECTIVES: We aimed to explore the gut microbiota, serum metabolite, and serum lipid signatures in T1D patients by machine learning. METHODS: We evaluated 137 individuals in a cross-sectional cohort involving 38 T1D patients, 38 healthy controls, and 61 T1D patients for validation. We characterized gut microbiome, serum metabolite, and serum lipid profiles with machine learning approaches (logistic regression, support vector machine, Gaussian naive Bayes, and random forest). RESULTS: The machine learning approaches using the microbiota composition did not accurately diagnose T1D (model accuracy = 0.7555), while the accuracy of the model using the metabolite composition was 0.9333. Based on the metabolite composition, 3-hydroxybutyric acid and 9-oxo-ode (area under curve = 0.70 and 0.67, respectively, both increased in T1D) were meaningful overlap metabolites screened by multiple bioinformatics methods. We confirmed the biological relevance of the microbiome, metabolome, and lipidome features in the validation group. CONCLUSION: By using machine learning algorithms and multi-omics, we demonstrated that T1D patients are associated with altered microbiota, metabolite, and lipidomic signatures or functions.

19.
Ophthalmic Epidemiol ; : 1-6, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817451

RESUMEN

PURPOSE: Community Eye Clinics (CEC) increase accessibility of specialist ophthalmic services in the community, reducing demand for tertiary eye services. This paper aims to evaluate the impact of CEC on first-visit referrals from Hougang Polyclinic (HOU) to Tan Tock Seng Hospital Ophthalmology Specialist Outpatient Clinic (SOC). METHODS: A retrospective analysis was performed on first-visit referrals from Hougang Polyclinic (HOU) to Tan Tock Seng Hospital Ophthalmology Specialist Outpatient Clinic (SOC) over a similar 3-months period before and after the introduction of CEC in August 2018 (1 January to 31 March in 2018 and 2019, respectively). Data pertaining to patients' presenting complaints, referral reasons, final diagnoses, follow-up plans, and need for ophthalmic intervention were obtained. RESULTS: We included 978 patients in our study. There was a 27.5% reduction in the number of first-visit referrals seen at SOC after the establishment of CEC. Patients were more likely to be referred on to sub-specialty eye clinics (10.8% vs. 12.9%, p= p = .304) and receive more ophthalmic interventions (15% vs. 16.3%, p = .066) than prior to CEC. CONCLUSION: The CEC provides greater accessibility to eye care within the community. Optometrists are upskilled to manage patients with stable eye conditions, whilst eye specialists can provide timely care to the SOC for patients with more severe eye conditions.

20.
Immunobiology ; 228(6): 152741, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716127

RESUMEN

OBJECTIVE: To explore the association of single nucleotide polymorphisms (SNPs) in the transforming growth interacting factor (TGIF) gene with bone metabolism markers and rheumatoid arthritis (RA) susceptibility. METHODS: Three SNPs were genotyped in 155 RA patients and 168 healthy controls using high-resolution melting (HRM) analysis. The serum levels of osteocalcin, bone alkaline phosphatase (BALP), and ß type I collagen-crosslinked C telopeptide (ß-CTX) were detected using electrochemical luminescence in 108 patients randomly selected from the RA group. RESULTS: Genotype and allele frequency analysis showed that rs73620203 was associated with bone erosion in RA (P = 0.012 and P = 0.003, respectively), and individuals carrying the T allele for rs73620203 showed a decreased RA risk (OR = 0.59, 95% CI = 0.42-0.84; P = 0.003). In sex-specific analysis, the rs73620203 polymorphism was associated with susceptibility to RA in women (P = 0.022 and P = 0.006, respectively). In addition, RA patients with three genotypes at the rs73620203 locus showed significant differences in serum osteocalcin and BALP (P = 0.006 and P = 0.037, respectively). Haplotype analysis revealed that the haploid ATG and GCA frequencies were significantly lower in the RA group (P = 0.036, OR = 0.693; P = 0.002, OR = 0.189, respectively), while the haploid ACA frequency of the RA group was enhanced (P < 0.01, OR = 5.058). CONCLUSION: Our study provides the first evidence that rs73620203 is associated with RA susceptibility and the relationship between TGIF gene SNPs and the regulation of bone metabolism in RA patients.


Asunto(s)
Artritis Reumatoide , Predisposición Genética a la Enfermedad , Femenino , Humanos , Masculino , Alelos , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/genética , Estudios de Casos y Controles , China/epidemiología , Frecuencia de los Genes , Genotipo , Osteocalcina/genética , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...