Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Immunol ; 162: 23-58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38866438

RESUMEN

The intestine represents the most complex cellular network in the whole body. It is constantly faced with multiple types of immunostimulatory agents encompassing from food antigen, gut microbiome, metabolic waste products, and dead cell debris. Within the intestine, most T cells are found in three primary compartments: the organized gut-associated lymphoid tissue, the lamina propria, and the epithelium. The well-orchestrated epithelial-immune-microbial interaction is critically important for the precise immune response. The main role of intestinal mesenchymal stromal cells is to support a structural framework within the gut wall. However, recent evidence from stromal cell studies indicates that they also possess significant immunomodulatory functions, such as maintaining intestinal tolerance via the expression of PDL1/2 and MHC-II molecules, and promoting the development of CD103+ dendritic cells, and IgA+ plasma cells, thereby enhancing intestinal homeostasis. In this review, we will summarize the current understanding of CD8+ T cells and stromal cells alongside the intestinal tract and discuss the reciprocal interactions between T subsets and mesenchymal stromal cell populations. We will focus on how the tissue residency, migration, and function of CD8+ T cells could be potentially regulated by mesenchymal stromal cell populations and explore the molecular mediators, such as TGF-ß, IL-33, and MHC-II molecules that might influence these processes. Finally, we discuss the potential pathophysiological impact of such interaction in intestine hemostasis as well as diseases of inflammation, infection, and malignancies.


Asunto(s)
Linfocitos T CD8-positivos , Homeostasis , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Mucosa Intestinal/inmunología , Comunicación Celular/inmunología , Intestinos/inmunología
2.
Biomed Pharmacother ; 171: 116113, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181717

RESUMEN

Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, characterized by high heterogeneity, strong invasiveness, poor prognosis, and a low survival rate. A broad range of nanoparticles have been recently developed as drug delivery systems for GBM therapy owing to their inherent size effect and ability to cross the blood-brain barrier (BBB). Lipid-based nanoparticles (LBNPs), such as liposomes, solid lipid NPs (SLNs), and nano-structured lipid carriers (NLCs), have emerged as the most promising drug delivery system for the treatment of GBM because of their unique size, surface modification possibilities, and proven bio-safety. In this review, the main challenges of the current clinical treatment of GBM and the strategies on how novel LBNPs overcome them were explored. The application and progress of LBNP-based drug delivery systems in GBM chemotherapy, immunotherapy, and gene therapy in recent years were systematically reviewed, and the prospect of LBNPs for GBM treatment was discussed.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Liposomas/farmacología , Glioblastoma/patología , Barrera Hematoencefálica , Microambiente Tumoral , Sistemas de Liberación de Medicamentos/métodos , Inmunosupresores/farmacología , Células Madre/patología , Lípidos , Neoplasias Encefálicas/genética
3.
J Vis Exp ; (193)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37036214

RESUMEN

The murine small intestine, or colon mesenchyme, is highly heterogenous, containing distinct cell types including blood and lymphatic endothelium, nerves, fibroblasts, myofibroblasts, smooth muscle cells, immune cells, and the recently identified cell type, telocytes. Telocytes are unique mesenchymal cells with long cytoplasmic processes, reaching a distance of tens to hundreds of microns from the cell body. Telocytes have recently emerged as an important intestinal stem cell niche component, providing Wnt proteins that are essential for stem and progenitor cell proliferation. Although protocols on how to isolate mesenchyme from the mouse intestine are available, it is not clear whether these procedures allow the efficient isolation of telocytes. Isolating telocytes efficiently requires special protocol adjustments that would allow dissociation of the strong cell-cell contact between telocytes and neighboring cells without affecting their viability. Here, available intestinal mesenchyme isolation protocols were adjusted to support the successful isolation and culture of mesenchyme containing a relatively high yield of viable single-cell telocytes. The obtained single-cell suspension can be analyzed by several techniques, such as immunostaining, cell sorting, imaging, and mRNA experiments. This protocol yields mesenchyme with sufficiently conserved antigenic and functional properties of telocytes, and can be used for several applications. For example, they can be used for co-culture with mouse- or human-derived organoids to support organoid growth with no growth factor supplementation, to better reflect the situation in the original tissue.


Asunto(s)
Células Madre Mesenquimatosas , Telocitos , Ratones , Humanos , Animales , Intestinos , Telocitos/metabolismo , Técnicas de Cocultivo , Mesodermo
4.
Front Microbiol ; 14: 1092273, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846754

RESUMEN

Many pathogens cause reproductive failure in sows suffering a broad spectrum of sequelae, including abortions, stillbirth, mummification, embryonic death, and infertility. Although various detection methods, such as polymerase chain reaction (PCR) and real-time PCR, have been widely used for molecular diagnosis, mainly for a single pathogen. In this study, we developed a multiplex real-time PCR method for the simultaneous detection of porcine circovirus type 2 (PCV2), porcine circovirus type 3 (PCV3), porcine parvovirus (PPV) and pseudorabies virus (PRV) associated with porcine reproductive failure. The R 2 values for the standard curve of multiplex real-time PCR of PCV2, PCV3, PPV, and PRV reached to 0.996, 0.997, 0.996, and 0.998, respectively. Importantly, the limit of detection (LoD) of PCV2, PCV3, PPV, and PRV, were 1, 10, 10, 10 copies/reaction, respectively. Meanwhile, specificity test results indicated that multiplex real-time PCR for simultaneous detection is specific for these four target pathogens and does not react with other pathogens, such as classical swine fever virus, porcine reproductive and respiratory syndrome virus, and porcine epidemic diarrhea virus. Besides, this method had good repeatability with coefficients of variation of intra- and inter-assay less than 2%. Finally, this approach was further evaluated by 315 clinical samples for its practicality in the field. The positive rates of PCV2, PCV3, PPV, and PRV were 66.67% (210/315), 8.57% (27/315), 8.89% (28/315), and 4.13% (13/315), respectively. The overall co-infection rates of two or more pathogens were 13.65% (43/315). Therefore, this multiplex real-time PCR provides an accurate and sensitive method for the identification of those four underlying DNA viruses among potential pathogenic agents, allowing it to be applied in diagnostics, surveillance, and epidemiology.

5.
Front Immunol ; 13: 1057932, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405734

RESUMEN

The mammalian intestine is an organ that can be spatially defined by two axes: longitudinal and vertical. Such anatomical structure ensures the maintenance of a relatively immuno-quiescent and proliferation-promoting crypt for intestinal stem cell differentiation while actively warding off the invading intestinal microbes at the villus tip during digestion and nutrient absorption. Such behavior is achieved by the fine coordination among intestinal epithelial cells, intestinal mesenchymal stromal cells and tissue-resident immune cells like myeloid cells and lymphocytes. Among these cell types resided in the colon, intestinal mesenchymal stromal cells are considered to be the essential link between epithelium, vasculature, neuronal system, and hematopoietic compartment. Recent advancement of single cell and spatial transcriptomics has enabled us to characterize the spatial and functional heterogeneity of intestinal mesenchymal stromal cells. These studies reveal distinctive intestinal mesenchymal stromal cells localized in different regions of the intestine with diverse functions including but not limited to providing cytokines and growth factors essential for different immune cells and epithelial cells which predict niche formation for immune function from the villus tip to the crypt bottom. In this review, we aim to provide an overall view of the heterogeneity of intestinal mesenchymal stromal cells, the spatial distribution of these cells along with their interaction with immune cells and the potential regulatory cytokine profile of these cell types. Summarization of such information may enrich our current understanding of the immuno-regulatory functions of the newly identified mesenchymal stromal cell subsets beyond their epithelial regulatory function.


Asunto(s)
Mucosa Intestinal , Células Madre Mesenquimatosas , Animales , Mucosa Intestinal/metabolismo , Intestinos , Duodeno , Células Epiteliales/metabolismo , Mamíferos
7.
Nature ; 592(7855): 606-610, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33658717

RESUMEN

Intestinal stromal cells are known to modulate the propagation and differentiation of intestinal stem cells1,2. However, the precise cellular and molecular mechanisms by which this diverse stromal cell population maintains tissue homeostasis and repair are poorly understood. Here we describe a subset of intestinal stromal cells, named MAP3K2-regulated intestinal stromal cells (MRISCs), and show that they are the primary cellular source of the WNT agonist R-spondin 1 following intestinal injury in mice. MRISCs, which are epigenetically and transcriptomically distinct from subsets of intestinal stromal cells that have previously been reported3-6, are strategically localized at the bases of colon crypts, and function to maintain LGR5+ intestinal stem cells and protect against acute intestinal damage through enhanced R-spondin 1 production. Mechanistically, this MAP3K2 specific function is mediated by a previously unknown reactive oxygen species (ROS)-MAP3K2-ERK5-KLF2 axis to enhance production of R-spondin 1. Our results identify MRISCs as a key component of an intestinal stem cell niche that specifically depends on MAP3K2 to augment WNT signalling for the regeneration of damaged intestine.


Asunto(s)
Mucosa Intestinal/citología , MAP Quinasa Quinasa Quinasa 2/metabolismo , Nicho de Células Madre , Células del Estroma/citología , Animales , Antígenos CD34 , Colitis/patología , Colitis/prevención & control , Epigénesis Genética , Femenino , Mucosa Intestinal/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Especies Reactivas de Oxígeno/metabolismo , Tetraspanina 28 , Trombospondinas/biosíntesis , Trombospondinas/metabolismo , Antígenos Thy-1
8.
Sci China Life Sci ; 64(3): 389-403, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32737854

RESUMEN

T cell-mediated immunity in the intestine is stringently controlled to ensure proper immunity against pathogenic microbes and to prevent autoimmunity, a known cause of inflammatory bowel disease. However, precisely how T cells regulate intestine immunity remains to be fully understood. In this study, we found that mitogen-activated protein kinase kinase kinase 2 (MAP3K2) is required for the CD4+ T cell-mediated inflammation in the intestine. Using a T cell transfer colitis model, we found that MAP3K2-deficient naïve CD4 T cells had a dramatically reduced ability to induce colitis compared to wild type T cells. In addition, significantly fewer IFN-γ- but more IL-17A-producing CD4+ T cells in the intestines of mice receiving MAP3K2-deficient T cells than in those from mice receiving wild type T cells was observed. Interestingly, under well-defined in vitro differentiation conditions, MAP3K2-deficient naïve T cells were not impaired in their ability to differentiate into Th1, Th17 and Treg. Furthermore, the MAP3K2-regulated colitis severity was mediated by Th1 but not Th17 cells in the intestine. At the molecular level, we showed that MAP3K2-mediated Th1 cell differentiation in the intestine was regulated by IL-18 and required specific JNK activation. Together, our study reveals a novel regulatory role of MAP3K2 in intestinal T cell immunity via the IL-18-MAP3K2-JNK axis and may provide a novel target for intervention in T cell-mediated colitis.


Asunto(s)
Diferenciación Celular/fisiología , Colitis/inmunología , Interleucina-18/fisiología , MAP Quinasa Quinasa Quinasa 2/fisiología , Células TH1/citología , Animales , MAP Quinasa Quinasa 4/metabolismo , MAP Quinasa Quinasa Quinasa 2/genética , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Células TH1/inmunología , Timo/citología
9.
Acta Physiol (Oxf) ; 227(2): e13317, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31132220

RESUMEN

AIM: Matrix metalloproteinase-9 (MMP9) plays a profibrotic role in renal fibrosis. Neutrophils produce MMP9 in many pathologic models. However, the effect of neutrophil on the progression of renal fibrosis and the relationship of MMP9 to the infiltration of neutrophils into the kidney remain unknown. METHODS: The surgery of unilateral ureter obstruction (UUO) was performed in male C57BL/6 mice. Kidneys were collected for analyses on days 0, 1, 3, 5 or 7 following surgery. The inflammatory cells were analysed by flow cytometry. The mRNA and protein levels of renal fibrosis factor and inflammatory factor were measured by qRT-PCR, immumofluorescence and western blot analysis. RESULTS: In a mouse kidney model of UUO, neutrophil infiltration significantly increased and neutrophil accumulation reached the highest level at 5 days after the injury. In the obstructed kidney, depleting neutrophils decreased the expression of inflammatory factors, inhibited the accumulation of macrophages including type 2 macrophages and suppressed renal fibrosis. Almost all neutrophils produced MMP9 at the early stage of kidney obstruction. MMP9 attracted neutrophils and inflammatory cells because inhibiting MMP9 suppressed the infiltration of neutrophils and other inflammatory cells and reduced renal fibrosis, regardless of using MMP9 neutralizing antibody or MMP9 inhibitor or different intervening periods of days (0-6, 0-3 or 3-6 were applied after kidney obstruction). CONCLUSION: MMP9 promotes neutrophil infiltration by increasing the inflammatory level, macrophage accumulation and renal fibrosis in the obstructed kidney. Inhibiting MMP9 or depleting neutrophils in the early stage of acute kidney injury can relieve the progression of kidney fibrosis.


Asunto(s)
Enfermedades Renales/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Neutrófilos/fisiología , Obstrucción Ureteral/metabolismo , Animales , Microambiente Celular , Fibrosis , Enfermedades Renales/fisiopatología , Macrófagos , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA