Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 4(11): 1076-1089, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33020600

RESUMEN

Bone-marrow endothelial cells in the haematopoietic stem-cell niche form a network of blood vessels that regulates blood-cell traffic as well as the maintenance and function of haematopoietic stem and progenitor cells. Here, we report the design and in vivo performance of systemically injected lipid-polymer nanoparticles encapsulating small interfering RNA (siRNA), for the silencing of genes in bone-marrow endothelial cells. In mice, nanoparticles encapsulating siRNA sequences targeting the proteins stromal-derived factor 1 (Sdf1) or monocyte chemotactic protein 1 (Mcp1) enhanced (when silencing Sdf1) or inhibited (when silencing Mcp1) the release of stem and progenitor cells and of leukocytes from the bone marrow. In a mouse model of myocardial infarction, nanoparticle-mediated inhibition of cell release from the haematopoietic niche via Mcp1 silencing reduced leukocytes in the diseased heart, improved healing after infarction and attenuated heart failure. Nanoparticle-mediated RNA interference in the haematopoietic niche could be used to investigate haematopoietic processes for therapeutic applications in cancer, infection and cardiovascular disease.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Silenciador del Gen/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Nanopartículas/administración & dosificación , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Nicho de Células Madre/genética , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Madre Hematopoyéticas/metabolismo , Ratones Endogámicos C57BL , Infarto del Miocardio/prevención & control
2.
J Control Release ; 316: 404-417, 2019 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-31678653

RESUMEN

Messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapy, with the potential to induce protein production to treat and prevent a range of diseases. However, the widespread use of mRNA as a therapeutic requires safe and effective in vivo delivery technologies. Libraries of ionizable lipid nanoparticles (LNPs) have been designed to encapsulate mRNA, prevent its degradation, and mediate intracellular delivery. However, these LNPs are typically characterized and screened in an in vitro setting, which may not fully replicate the biological barriers that they encounter in vivo. Here, we designed and evaluated a library of engineered LNPs containing barcoded mRNA (b-mRNA) to accelerate the screening of mRNA delivery platforms in vivo. These b-mRNA are similar in structure and function to regular mRNA, and contain barcodes that enable their delivery to be quantified via deep sequencing. Using a mini-library of b-mRNA LNPs formulated via microfluidic mixing, we show that these different formulations can be pooled together, administered intravenously into mice as a single pool, and their delivery to multiple organs (liver, spleen, brain, lung, heart, kidney, pancreas, and muscle) can be quantified simultaneously using deep sequencing. In the context of liver and spleen delivery, LNPs that exhibited high b-mRNA delivery also yielded high luciferase expression, indicating that this platform can identify lead LNP candidates as well as optimal formulation parameters for in vivo mRNA delivery. Interestingly, LNPs with identical formulation parameters that encapsulated different types of nucleic acid barcodes (b-mRNA versus a DNA barcode) altered in vivo delivery, suggesting that the structure of the barcoded nucleic acid affects LNP in vivo delivery. This platform, which enables direct barcoding and subsequent quantification of a functional mRNA, can accelerate the in vivo screening and design of LNPs for mRNA therapeutic applications such as CRISPR-Cas9 gene editing, mRNA vaccination, and other mRNA-based regenerative medicine and protein replacement therapies.


Asunto(s)
Técnicas de Transferencia de Gen , Lípidos/química , Nanopartículas , ARN Mensajero/administración & dosificación , Animales , Procesamiento Automatizado de Datos , Femenino , Terapia Genética , Ratones , Ratones Endogámicos C57BL , Microfluídica
3.
J Control Release ; 290: 75-87, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30290244

RESUMEN

Activation of the Wnt signaling pathway promotes lung cancer progression and contributes to poor patient prognosis. The porcupine inhibitor LGK974, a novel orally bioavailable cancer therapeutic in Phase I clinical trials, induces potent Wnt signaling inhibition and leads to suppressed growth and progression of multiple types of cancers. The clinical use of LGK974, however, is limited in part due to its low solubility and high toxicity in tissues that rely on Wnt signaling for normal homeostasis. Here, we report the use of host-guest chemistry to enhance the solubility and bioavailability of LGK974 in mice through complexation with cyclodextrins (CD). We assessed the effects of these complexes to inhibit Wnt signaling in lung adenocarcinomas that are typically driven by overactive Wnt signaling. 2D 1H NMR confirmed host-guest complexation of CDs with LGK974. CD:LGK974 complexes significantly decreased the expression of Wnt target genes in lung cancer organoids and in lung cancer allografts in mice. Further, CD:LGK974 complexes increased the bioavailability upon oral administration in mice compared to free LGK974. In a mouse lung cancer allograft model, CD:LGK974 complexes induced potent Wnt signaling inhibition with reduced intestinal toxicity compared to treatment with free drug. Collectively, the development of these complexes enables safer and repeated oral or parenteral administration of Wnt signaling inhibitors, which hold promise for the treatment of multiple types of malignancies.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Ciclodextrinas/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Pirazinas/administración & dosificación , Piridinas/administración & dosificación , Proteínas Wnt/antagonistas & inhibidores , Vía de Señalización Wnt/efectos de los fármacos , Adenocarcinoma del Pulmón/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Ciclodextrinas/química , Ciclodextrinas/farmacocinética , Humanos , Neoplasias Pulmonares/metabolismo , Ratones Desnudos , Pirazinas/química , Pirazinas/farmacocinética , Piridinas/química , Piridinas/farmacocinética
4.
Artículo en Inglés | MEDLINE | ID: mdl-28702455

RESUMEN

Lubricin (LUB), a major mucinous glycoprotein of mammalian synovial fluids, is believed to provide excellent lubrication to cartilage surfaces. Consequently, when joint disease or replacement leads to increased friction and surface damage in the joint, robust synthetic LUB alternatives that could be used therapeutically to improve lubrication and surface protection are needed. Here, we report the characterization of a lubricating multiblock bottlebrush polymer whose architecture was inspired by LUB, and we investigate the role of fibronectin (FN), a glycoprotein found in the superficial zone of cartilage, in mediating the tribological properties of the polymer upon shear between mica surfaces. Our surface forces apparatus (SFA) normal force measurements indicate that the lubricin-mimetic (mimLUB) could be kept anchored between mica surfaces, even under high contact pressures, when an intermediate layer of FN was present. Additional SFA friction measurements show that FN would also extend the wearless friction regime of the polymer up to pressures of 3.4 MPa while ensuring stable friction coefficients (µ ≈ 0.28). These results demonstrate synergistic interactions between mimLUB and FN in assisting the lubrication and wear protection of ideal (mica) substrates upon shear. Collectively, these findings suggest that our proposed mimLUB might be a promising alternative to LUB, as similar mechanisms could potentially facilitate the interaction between the polymer and cartilage surfaces in articular joints and prosthetic implants in vivo.

5.
J Orthop Res ; 35(3): 548-557, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27419808

RESUMEN

The glycoprotein, lubricin, is the primary boundary lubricant of articular cartilage and has been shown to prevent cartilage damage after joint injury. In this study, a library of eight bottle-brush copolymers were synthesized to mimic the structure and function of lubricin. Polyethylene glycol (PEG) grafted onto a polyacrylic acid (pAA) core mimicked the hydrophilic mucin-like domain of lubricin, and a thiol terminus anchored the polymers to cartilage surfaces much like lubricin's C-terminus. These copolymers, abbreviated as pAA-g-PEG, rapidly bound to cartilage surfaces with binding time constants ranging from 20 to 39 min, and affected lubrication under boundary mode conditions with coefficients of friction ranging from 0.140 ± 0.024 to 0.248 ± 0.030. Binding and lubrication were highly correlated (r2 = 0.89-0.99), showing that boundary lubrication in this case strongly depends on the binding of the lubricant to the surface. Along with time-dependent and dose-dependent behavior, lubrication and binding of the lubricin-mimetics also depended on copolymer structural parameters including pAA backbone length, PEG side chain length, and PEG:AA brush density. Polymers with larger backbone sizes, brush sizes, or brush densities took longer to bind (p < 0.05). Six of the eight polymers reduced friction relative to denuded cartilage plugs (p < 0.05), suggesting their potential to lubricate and protect cartilage in vivo. In copolymers with shorter pAA backbones, increasing hydrodynamic size inhibited lubrication (p < 0.08), while the opposite was observed in copolymers with longer backbones (p < 0.05). These polymers show similar in vitro lubricating efficacy as recombinant lubricins and as such have potential for in vivo treatment of post-traumatic osteoarthritis. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:548-557, 2017.


Asunto(s)
Materiales Biomiméticos/síntesis química , Cartílago Articular/química , Lubricantes/síntesis química , Animales , Bovinos , Glicoproteínas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...