Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Pharmacol ; 98: 179-224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37524487

RESUMEN

Idiopathic pulmonary fibrosis (IPF) results from the dysregulated process of injury and repair, which promotes scarring of the lung tissue and deposition of collagen-rich extracellular matrix (ECM) components, that make the lung unphysiologically stiff. IPF presents a serious concern as its pathogenesis remains elusive, and current anti-fibrotic treatments are only effective in slowing rather than halting disease progression. The IPF disease pathogenesis is incompletely defined, complex and incorporates interplay between different fibrogenesis signaling pathways. Preclinical IPF experimental models used to validate drug candidates present significant limitations in modeling IPF pathobiology, with their limited time frame, simplicity and inaccurate representation of the disease and the mechanical influences of IPF. Potentially more accurate mimetic disease models that capture the cell-cell and cell-matrix interaction, such as 3D cultures, organoids and precision-cut lung slices (PCLS), may yield more meaningful clinical predictions for drug candidates. Recent advances in developing anti-fibrotic compounds have positioned drug towards targeting components of the fibrogenesis signaling pathway of IPF or the extracellular microenvironment. The major goals in this area of research focus on finding ways to reverse or halt the disease progression by utilizing more disease-relevant experimental models to improve the qualification of potential drug targets for treating pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Fibrosis , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Progresión de la Enfermedad
2.
Pharmacol Res ; 157: 104881, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380052

RESUMEN

The average respiration rate for an adult is 12-20 breaths per minute, which constantly exposes the lungs to allergens and harmful particles. As a result, respiratory diseases, which includes asthma, chronic obstructive pulmonary disease (COPD) and acute lower respiratory tract infections (LTRI), are a major cause of death worldwide. Although asthma, COPD and LTRI are distinctly different diseases with separate mechanisms of disease progression, they do share a common feature - airway inflammation with intense recruitment and activation of granulocytes and mast cells. Neutrophils, eosinophils, basophils, and mast cells are crucial players in host defense against pathogens and maintenance of lung homeostasis. Upon contact with harmful particles, part of the pulmonary defense mechanism is to recruit these cells into the airways. Despite their protective nature, overactivation or accumulation of granulocytes and mast cells in the lungs results in unwanted chronic airway inflammation and damage. As such, understanding the bright and the dark side of these leukocytes in lung physiology paves the way for the development of therapies targeting this important mechanism of disease. Here we discuss the role of granulocytes in respiratory diseases and summarize therapeutic strategies focused on granulocyte recruitment and activation in the lungs.


Asunto(s)
Granulocitos/efectos de los fármacos , Fármacos del Sistema Respiratorio/uso terapéutico , Sistema Respiratorio/efectos de los fármacos , Enfermedades Respiratorias/tratamiento farmacológico , Animales , Quimiotaxis de Leucocito/efectos de los fármacos , Granulocitos/inmunología , Granulocitos/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Terapia Molecular Dirigida , Fenotipo , Sistema Respiratorio/inmunología , Sistema Respiratorio/metabolismo , Sistema Respiratorio/fisiopatología , Fármacos del Sistema Respiratorio/efectos adversos , Enfermedades Respiratorias/inmunología , Enfermedades Respiratorias/metabolismo , Enfermedades Respiratorias/fisiopatología , Transducción de Señal
3.
Neuromolecular Med ; 22(2): 293-303, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31902115

RESUMEN

Microglial cells are resident macrophages of the central nervous system (CNS) that respond to bioactive lipids such as docosahexaenoic acid (DHA). Low micromolar concentrations of DHA typically promote anti-inflammatory functions of microglia, but higher concentrations result in a form of pro-inflammatory programmed cell death known as pyroptosis. This study used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to investigate the morphological characteristics of pyroptosis in BV-2 microglial cells following exposure to 200 µM DHA. Vehicle-treated cells are characterized by extended processes, spine-like projections or 0.4 to 5.2 µm in length, and numerous extracellular vesicles (EVs) tethered to the surface of the plasma membrane. In contrast to vehicle-treated cells, gross abnormalities are observed after treating cells with 200 µM DHA for 4 h. These include the appearance of numerous pits or pores of varying sizes across the cell surface, structural collapse and flattening of the cell shape. Moreover, EVs and spines were lost following DHA treatment, possibly due to release from the cell surface. The membrane pores appear after DHA treatment initially measured ~ 30 nm, consistent with the previously reported gasdermin D (GSDMD) pore complexes. Complete collapse of cytoplasmic organization and loss of nuclear envelope integrity were also observed in DHA-treated cells. These processes are morphologically distinct from the changes that occur during cisplatin-induced apoptosis, such as the appearance of apoptotic bodies and tightly packed organelles, and the maintenance of EVs and nuclear envelope integrity. Cumulatively, this study provides a systematic description of the ultrastructural characteristics of DHA-induced pyroptosis, including distinguishing features that differentiate this process from apoptosis.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Microglía/efectos de los fármacos , Piroptosis/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Extensiones de la Superficie Celular/efectos de los fármacos , Extensiones de la Superficie Celular/ultraestructura , Cisplatino/farmacología , Citoplasma/efectos de los fármacos , Citoplasma/ultraestructura , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/ultraestructura , Ratones , Microglía/ultraestructura , Microscopía Electrónica , Microscopía Electrónica de Rastreo , Microscopía de Contraste de Fase , Membrana Nuclear/efectos de los fármacos , Membrana Nuclear/ultraestructura , Seudópodos/efectos de los fármacos , Seudópodos/ultraestructura , Propiedades de Superficie
4.
Curr Opin Pharmacol ; 46: 73-81, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31078066

RESUMEN

Corticosteroid is the most widely used anti-inflammatory agent for asthma and chronic obstructive pulmonary disease (COPD). However, most of the severe asthmatics and COPD patients show poor response to the anti-inflammatory benefits of corticosteroids. Corticosteroid resistance is a major therapeutic challenge to the treatment of severe asthma and COPD. Cellular and molecular mechanisms underlying steroid insensitivity in severe asthma and COPD are still not fully understood. This review aims to recapitulate recent discoveries of potential contributing mechanisms of steroid resistance, and to appraise new therapeutic strategies shown to restore steroid sensitivity in experimental models of severe asthma and COPD, and in human clinical trials. It has been revealed that pro-inflammatory cytokines such as IFN-γ, TNF-α, TGF-ß, IL-17A, IL-27, IL-33 and thymic stromal lymphopoietin (TSLP) may contribute to steroid resistance in severe asthma and COPD. These cytokines together with allergens, pathogens, and cigarette smoke can modulate multiple signaling pathways including PI3Kδ/Akt/mTOR, JAK1/2-STAT1/5, p38MAPK/JNK, Nrf2/HDAC2/c-Jun, heightened glucocorticoid receptor (GR)ß/GRα ratio, and casein kinase 1 (CK1δ/ε)/cofilin 1, to induce steroid insensitivity. More recently, microRNAs such as miR-9, miR-21, and miR-126 have been implicated for corticosteroid insensitivity in asthma and COPD. Therapeutic strategies such as cytokine-specific biologics, signaling molecule-specific small molecule inhibitors, and microRNA-specific antagomir oligonucleotides are potentially promising approaches to reverse corticosteroid resistance. A panel of clinically effective drugs have shown promise in restoring steroid resistance in experimental models, and it is highly probable that some of these molecules can be successfully repositioned for the clinical use in COPD and severe asthma.


Asunto(s)
Corticoesteroides/uso terapéutico , Asma/tratamiento farmacológico , Resistencia a Medicamentos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Animales , Asma/inmunología , Asma/metabolismo , Humanos , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
5.
Curr Opin Pharmacol ; 40: 9-17, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29288933

RESUMEN

The renin-angiotensin system (RAS) plays a major role in regulating electrolyte balance and blood pressure. RAS has also been implicated in the regulation of inflammation, proliferation and fibrosis in pulmonary diseases such as asthma, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and pulmonary arterial hypertension (PAH). Current therapeutics suffer from some drawbacks like steroid resistance, limited efficacies and side effects. Novel intervention is definitely needed to offer optimal therapeutic strategy and clinical outcome. This review compiles and analyses recent investigations targeting RAS for the treatment of inflammatory lung diseases. Inhibition of the upstream angiotensin (Ang) I/Ang II/angiotensin receptor type 1 (AT1R) pathway and activation of the downstream angiotensin-converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor pathway are two feasible strategies demonstrating efficacies in various pulmonary disease models. More recent studies favor the development of targeting the downstream ACE2/Ang (1-7)/Mas receptor pathway, in which diminazene aceturate, an ACE2 activator, GSK2586881, a recombinant ACE2, and AV0991, a Mas receptor agonist, showed much potential for further development. As the pathogenesis of pulmonary diseases is so complex that RAS modulation may be used alone or in combination with existing drugs like corticosteroids, pirfenidone/nintedanib or endothelin receptor antagonists for different pulmonary diseases. Personalized medicine through genetic screening and phenotyping for angiotensinogen or ACE would aid treatment especially for non-responsive patients. This review serves to provide an update on the latest development in the field of RAS targeting for pulmonary diseases, and offer some insights into future direction.


Asunto(s)
Enfermedades Pulmonares/tratamiento farmacológico , Sistema Renina-Angiotensina/efectos de los fármacos , Fármacos del Sistema Respiratorio/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Diseño de Fármacos , Humanos , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/fisiopatología , Terapia Molecular Dirigida , Fármacos del Sistema Respiratorio/efectos adversos , Transducción de Señal/efectos de los fármacos
6.
Neurosci Lett ; 526(1): 59-62, 2012 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-22921511

RESUMEN

Secretagogin is a six EF-hand calcium-binding protein that can identify granule cells in the dentate gyrus of hippocampus. The aim of this study was to determine if secretagogin can be detected in human blood cells. Eight adult males were recruited for blood analysis. Whole blood was separated into plasma, peripheral mononuclear cells and erythrocytes with Ficoll-Paque and probed for secretagogin using reverse-transcription polymerase chain reaction and Western blot. While secretagogin mRNA was detected in both peripheral mononuclear cells and erythrocytes using reverse-transcription polymerase chain reaction, SCGN protein was only detected in erythrocytes. Interestingly, peripheral mononuclear cells secretagogin mRNA expression levels showed significant negative correlation with age. This begets the question on the function of secretagogin in blood cells and if it is correlated to neurodegeneration associated with ageing. This remains our impetus for further research.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Eritrocitos/metabolismo , Adulto , Factores de Edad , Western Blotting , Proteínas de Unión al Calcio/genética , Humanos , Masculino , Neutrófilos/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Secretagoginas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...