Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Am J Med Genet A ; : e63638, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779990

RESUMEN

Myhre syndrome is an increasingly diagnosed ultrarare condition caused by recurrent germline autosomal dominant de novo variants in SMAD4. Detailed multispecialty evaluations performed at the Massachusetts General Hospital (MGH) Myhre Syndrome Clinic (2016-2023) and by collaborating specialists have facilitated deep phenotyping, genotyping and natural history analysis. Of 47 patients (four previously reported), most (81%) patients returned to MGH at least once. For patients followed for at least 5 years, symptom progression was observed in all. 55% were female and 9% were older than 18 years at diagnosis. Pathogenic variants in SMAD4 involved protein residues p.Ile500Val (49%), p.Ile500Thr (11%), p.Ile500Leu (2%), and p.Arg496Cys (38%). Individuals with the SMAD4 variant p.Arg496Cys were less likely to have hearing loss, growth restriction, and aortic hypoplasia than the other variant groups. Those with the p.Ile500Thr variant had moderate/severe aortic hypoplasia in three patients (60%), however, the small number (n = 5) prevented statistical comparison with the other variants. Two deaths reported in this cohort involved complex cardiovascular disease and airway stenosis, respectively. We provide a foundation for ongoing natural history studies and emphasize the need for evidence-based guidelines in anticipation of disease-specific therapies.

2.
Acad Med ; 99(8): 833-840, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38527049

RESUMEN

ABSTRACT: In busy clinical environments, educational opportunities must be designed to accommodate learner-specific needs. Many adult learners prefer short, relevant, technology-enhanced learning. As such, electronic learning (e-learning) experiences have become a prominent part of medical education. Yet, there remain challenges to e-learning experiences in the current educational landscape. To address these challenges, the authors developed the TinyTalks paradigm, which serves as the educational foundation for the TinyTalks curriculum.The TinyTalks paradigm was developed using the existing e-learning literature and foundational principles of adult learning and related theories. The TinyTalks paradigm includes 3 ground rules: (1) all TinyTalks videos must identify a category (approach to, explanation of, or application of) to clarify the focus of the topic, (2) all TinyTalks videos must be less than 7 minutes with all material presented on one virtual chalkboard screen, and (3) all TinyTalks videos must use the hook, frame, and delivery model, which guides the creation of the video. The resulting TinyTalks curriculum is an online repository of short, chalk talk-style educational videos, developed by interdisciplinary health professionals and targeted to the level of trainees, that is available to be used flexibly by learners for just-in-time learning, flipped classroom sessions, and/or self-study.The authors used Kern's 6-step approach to curriculum development as the conceptual framework for the development and implementation of the TinyTalks curriculum at Mass General for Children (June 2021-January 2023). While developing and implementing the curriculum, the authors focused on topic selection, stakeholder recruitment, establishing a process flow, and creating a virtual home.The authors believe the TinyTalks paradigm outlines an effective educational strategy that accommodates the unique needs of both learners and teachers in the medical education setting. The next steps are to scale the TinyTalks curriculum up by expanding the content library and to evaluate its efficacy.


Asunto(s)
Curriculum , Humanos , Educación Médica/métodos , Instrucción por Computador/métodos , Grabación en Video , Educación a Distancia/métodos
4.
JAMA Netw Open ; 6(5): e2312231, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37155167

RESUMEN

Importance: Newborn genome sequencing (NBSeq) can detect infants at risk for treatable disorders currently undetected by conventional newborn screening. Despite broad stakeholder support for NBSeq, the perspectives of rare disease experts regarding which diseases should be screened have not been ascertained. Objective: To query rare disease experts about their perspectives on NBSeq and which gene-disease pairs they consider appropriate to evaluate in apparently healthy newborns. Design, Setting, and Participants: This survey study, designed between November 2, 2021, and February 11, 2022, assessed experts' perspectives on 6 statements related to NBSeq. Experts were also asked to indicate whether they would recommend including each of 649 gene-disease pairs associated with potentially treatable conditions in NBSeq. The survey was administered between February 11 and September 23, 2022, to 386 experts, including all 144 directors of accredited medical and laboratory genetics training programs in the US. Exposures: Expert perspectives on newborn screening using genome sequencing. Main Outcomes and Measures: The proportion of experts indicating agreement or disagreement with each survey statement and those who selected inclusion of each gene-disease pair were tabulated. Exploratory analyses of responses by gender and age were conducted using t and χ2 tests. Results: Of 386 experts invited, 238 (61.7%) responded (mean [SD] age, 52.6 [12.8] years [range 27-93 years]; 126 [52.9%] women and 112 [47.1%] men). Among the experts who responded, 161 (87.9%) agreed that NBSeq for monogenic treatable disorders should be made available to all newborns; 107 (58.5%) agreed that NBSeq should include genes associated with treatable disorders, even if those conditions were low penetrance; 68 (37.2%) agreed that actionable adult-onset conditions should be sequenced in newborns to facilitate cascade testing in parents, and 51 (27.9%) agreed that NBSeq should include screening for conditions with no established therapies or management guidelines. The following 25 genes were recommended by 85% or more of the experts: OTC, G6PC, SLC37A4, CYP11B1, ARSB, F8, F9, SLC2A1, CYP17A1, RB1, IDS, GUSB, DMD, GLUD1, CYP11A1, GALNS, CPS1, PLPBP, ALDH7A1, SLC26A3, SLC25A15, SMPD1, GATM, SLC7A7, and NAGS. Including these, 42 gene-disease pairs were endorsed by at least 80% of experts, and 432 genes were endorsed by at least 50% of experts. Conclusions and Relevance: In this survey study, rare disease experts broadly supported NBSeq for treatable conditions and demonstrated substantial concordance regarding the inclusion of a specific subset of genes in NBSeq.


Asunto(s)
Condroitinsulfatasas , Enfermedades Raras , Masculino , Adulto , Humanos , Recién Nacido , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Tamizaje Neonatal , Padres , Sistema de Transporte de Aminoácidos y+L , Proteínas de Transporte de Monosacáridos , Antiportadores
5.
Urology ; 176: 183-186, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36858321

RESUMEN

Historically, Staphylococcus epidermidis has been considered a contaminant when grown on urine cultures. However, a growing body of literature suggests that S. epidermidis can cause urinary tract infections (UTIs) in children with anatomic variants or a history of instrumentation. In this case report, we describe a previously healthy child who presented with symptoms of UTI and urine cultures grew this uropathogen. The patient was screened for anatomic abnormalities and none were found; nonetheless, appropriate treatment should be initiated even if no underlying pathology is found.


Asunto(s)
Staphylococcus epidermidis , Infecciones Urinarias , Humanos , Niño , Infecciones Urinarias/diagnóstico , Urinálisis , Variación Anatómica
7.
J Am Soc Nephrol ; 32(3): 580-596, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33593823

RESUMEN

BACKGROUND: Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease. METHODS: Homozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. In vitro and in vivo studies determined the functional significance of the mutations identified. RESULTS: Three biallelic variants of the transcriptional regulator PRDM15 were detected in six families with proteinuric kidney disease. Four families with a variant in the protein's zinc-finger (ZNF) domain have additional GAMOS-like features, including brain anomalies, cardiac defects, and skeletal defects. All variants destabilize the PRDM15 protein, and the ZNF variant additionally interferes with transcriptional activation. Morpholino oligonucleotide-mediated knockdown of Prdm15 in Xenopus embryos disrupted pronephric development. Human wild-type PRDM15 RNA rescued the disruption, but the three PRDM15 variants did not. Finally, CRISPR-mediated knockout of PRDM15 in human podocytes led to dysregulation of several renal developmental genes. CONCLUSIONS: Variants in PRDM15 can cause either isolated nephrotic syndrome or a GAMOS-type syndrome on an allelic basis. PRDM15 regulates multiple developmental kidney genes, and is likely to play an essential role in renal development in humans.


Asunto(s)
Proteínas de Unión al ADN/genética , Hernia Hiatal/genética , Microcefalia/genética , Mutación Missense , Nefrosis/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Línea Celular , Preescolar , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/deficiencia , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Masculino , Modelos Moleculares , Síndrome Nefrótico/genética , Podocitos/metabolismo , Polimorfismo de Nucleótido Simple , Pronefro/embriología , Pronefro/metabolismo , Estabilidad Proteica , Factores de Transcripción/química , Factores de Transcripción/deficiencia , Xenopus laevis/embriología , Xenopus laevis/genética , Dedos de Zinc/genética
8.
Kidney Int Rep ; 6(2): 460-471, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33615071

RESUMEN

INTRODUCTION: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of chronic kidney disease during childhood. Identification of 63 monogenic human genes has delineated 12 distinct pathogenic pathways. METHODS: Here, we generated 2 independent sets of nephrotic syndrome (NS) candidate genes to augment the discovery of additional monogenic causes based on whole-exome sequencing (WES) data from 1382 families with NS. RESULTS: We first identified 63 known monogenic causes of NS in mice from public databases and scientific publications, and 12 of these genes overlapped with the 63 known human monogenic SRNS genes. Second, we used a set of 64 genes that are regulated by the transcription factor Wilms tumor 1 (WT1), which causes SRNS if mutated. Thirteen of these WT1-regulated genes overlapped with human or murine NS genes. Finally, we overlapped these lists of murine and WT1 candidate genes with our list of 120 candidate genes generated from WES in 1382 NS families, to identify novel candidate genes for monogenic human SRNS. Using this approach, we identified 7 overlapping genes, of which 3 genes were shared by all datasets, including SYNPO. We show that loss-of-function of SYNPO leads to decreased CDC42 activity and reduced podocyte migration rate, both of which are rescued by overexpression of wild-type complementary DNA (cDNA), but not by cDNA representing the patient mutation. CONCLUSION: Thus, we identified 3 novel candidate genes for human SRNS using 3 independent, nonoverlapping hypotheses, and generated functional evidence for SYNPO as a novel potential monogenic cause of NS.

9.
Pediatr Nephrol ; 36(11): 3515-3527, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33479824

RESUMEN

Steroid-resistant nephrotic syndrome (SRNS) is a genetically heterogeneous kidney disease that is the second most frequent cause of kidney failure in the first 2 decades of life. Despite the identification of mutations in more than 39 genes as causing SRNS, and the localization of its pathogenesis to glomerular podocytes, the disease mechanisms of SRNS remain poorly understood and no universally safe and effective therapy exists to treat patients with this condition. Recently, genetic research has identified a subgroup of SRNS patients whose kidney pathology is caused by primary coenzyme Q10 (CoQ10) deficiency due to recessive mutations in genes that encode proteins in the CoQ10 biosynthesis pathway. Clinical and preclinical studies show that primary CoQ10 deficiency may be responsive to treatment with CoQ10 supplements bypassing the biosynthesis defects. Coenzyme Q10 is an essential component of the mitochondrial respiratory chain, where it transports electrons from complexes I and II to complex III. Studies in yeast and mammalian model systems have recently identified the molecular functions of the individual CoQ10 biosynthesis complex proteins, validated these findings, and provided an impetus for developing therapeutic compounds to replenish CoQ10 levels in the tissues/organs and thus prevent the destruction of tissues due to mitochondrial OXPHOS deficiencies. In this review, we will summarize the clinical findings of the kidney pathophysiology of primary CoQ10 deficiencies and discuss recent advances in the development of therapies to counter CoQ10 deficiency in tissues.


Asunto(s)
Síndrome Nefrótico , Ubiquinona/análogos & derivados , Resistencia a Medicamentos , Humanos , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Esteroides/farmacología , Ubiquinona/deficiencia
10.
Am J Physiol Renal Physiol ; 319(6): F988-F999, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33103447

RESUMEN

Pathogenic variants in the LRP2 gene, encoding the multiligand receptor megalin, cause a rare autosomal recessive syndrome: Donnai-Barrow/Facio-Oculo-Acoustico-Renal (DB/FOAR) syndrome. Because of the rarity of the syndrome, the long-term consequences of the tubulopathy on human renal health have been difficult to ascertain, and the human clinical condition has hitherto been characterized as a benign tubular condition with asymptomatic low-molecular-weight proteinuria. We investigated renal function and morphology in a murine model of DB/FOAR syndrome and in patients with DB/FOAR. We analyzed glomerular filtration rate in mice by FITC-inulin clearance and clinically characterized six families, including nine patients with DB/FOAR and nine family members. Urine samples from patients were analyzed by Western blot analysis and biopsy materials were analyzed by histology. In the mouse model, we used histological methods to assess nephrogenesis and postnatal renal structure and contrast-enhanced magnetic resonance imaging to assess glomerular number. In megalin-deficient mice, we found a lower glomerular filtration rate and an increase in the abundance of injury markers, such as kidney injury molecule-1 and N-acetyl-ß-d-glucosaminidase. Renal injury was validated in patients, who presented with increased urinary kidney injury molecule-1, classical markers of chronic kidney disease, and glomerular proteinuria early in life. Megalin-deficient mice had normal nephrogenesis, but they had 19% fewer nephrons in early adulthood and an increased fraction of nephrons with disconnected glomerulotubular junction. In conclusion, megalin dysfunction, as present in DB/FOAR syndrome, confers an increased risk of progression into chronic kidney disease.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Glomérulos Renales/patología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Insuficiencia Renal Crónica/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Humanos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Insuficiencia Renal Crónica/patología , Adulto Joven
11.
J Am Soc Nephrol ; 30(2): 201-215, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30655312

RESUMEN

BACKGROUND: Whole-exome sequencing (WES) finds a CKD-related mutation in approximately 20% of patients presenting with CKD before 25 years of age. Although provision of a molecular diagnosis could have important implications for clinical management, evidence is lacking on the diagnostic yield and clinical utility of WES for pediatric renal transplant recipients. METHODS: To determine the diagnostic yield of WES in pediatric kidney transplant recipients, we recruited 104 patients who had received a transplant at Boston Children's Hospital from 2007 through 2017, performed WES, and analyzed results for likely deleterious variants in approximately 400 genes known to cause CKD. RESULTS: By WES, we identified a genetic cause of CKD in 34 out of 104 (32.7%) transplant recipients. The likelihood of detecting a molecular genetic diagnosis was highest for patients with urinary stone disease (three out of three individuals), followed by renal cystic ciliopathies (seven out of nine individuals), steroid-resistant nephrotic syndrome (nine out of 21 individuals), congenital anomalies of the kidney and urinary tract (ten out of 55 individuals), and chronic glomerulonephritis (one out of seven individuals). WES also yielded a molecular diagnosis for four out of nine individuals with ESRD of unknown etiology. The WES-related molecular genetic diagnosis had implications for clinical care for five patients. CONCLUSIONS: Nearly one third of pediatric renal transplant recipients had a genetic cause of their kidney disease identified by WES. Knowledge of this genetic information can help guide management of both transplant patients and potential living related donors.


Asunto(s)
Secuenciación del Exoma/métodos , Trasplante de Riñón/métodos , Medicina de Precisión/métodos , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/cirugía , Adolescente , Boston , Niño , Preescolar , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad/epidemiología , Pruebas Genéticas/métodos , Rechazo de Injerto , Supervivencia de Injerto , Hospitales Pediátricos , Humanos , Trasplante de Riñón/efectos adversos , Masculino , Pronóstico , Insuficiencia Renal Crónica/fisiopatología , Estudios Retrospectivos , Medición de Riesgo , Índice de Severidad de la Enfermedad , Análisis de Supervivencia , Receptores de Trasplantes/estadística & datos numéricos , Resultado del Tratamiento
12.
Nephrol Dial Transplant ; 34(3): 474-485, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295827

RESUMEN

BACKGROUND: Alport syndrome (AS) and atypical hemolytic-uremic syndrome (aHUS) are rare forms of chronic kidney disease (CKD) that can lead to a severe decline of renal function. Steroid-resistant nephrotic syndrome (SRNS) is more common than AS and aHUS and causes 10% of childhood-onset CKD. In recent years, multiple monogenic causes of AS, aHUS and SRNS have been identified, but their relative prevalence has yet to be studied together in a typical pediatric cohort of children with proteinuria and hematuria. We hypothesized that identification of causative mutations by whole exome sequencing (WES) in known monogenic nephritis and nephrosis genes would allow distinguishing nephritis from nephrosis in a typical pediatric group of patients with both proteinuria and hematuria at any level. METHODS: We therefore conducted an exon sequencing (WES) analysis for 11 AS, aHUS and thrombotic thrombocytopenic purpura-causing genes in an international cohort of 371 patients from 362 families presenting with both proteinuria and hematuria before age 25 years. In parallel, we conducted either WES or high-throughput exon sequencing for 23 SRNS-causing genes in all patients. RESULTS: We detected pathogenic mutations in 18 of the 34 genes analyzed, leading to a molecular diagnosis in 14.1% of families (51 of 362). Disease-causing mutations were detected in 3 AS-causing genes (4.7%), 3 aHUS-causing genes (1.4%) and 12 NS-causing genes (8.0%). We observed a much higher mutation detection rate for monogenic forms of CKD in consanguineous families (35.7% versus 10.1%). CONCLUSIONS: We present the first estimate of relative frequency of inherited AS, aHUS and NS in a typical pediatric cohort with proteinuria and hematuria. Important therapeutic and preventative measures may result from mutational analysis in individuals with proteinuria and hematuria.


Asunto(s)
Secuenciación del Exoma/métodos , Marcadores Genéticos , Mutación , Nefritis/diagnóstico , Nefritis/genética , Nefrosis/diagnóstico , Nefrosis/genética , Adolescente , Síndrome Hemolítico Urémico Atípico/diagnóstico , Síndrome Hemolítico Urémico Atípico/genética , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Diagnóstico Diferencial , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Nefritis Hereditaria/diagnóstico , Nefritis Hereditaria/genética , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/genética , Pronóstico
13.
Nephrol Dial Transplant ; 34(3): 485-493, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29534211

RESUMEN

BACKGROUND: Nephrotic syndrome (NS), a chronic kidney disease, is characterized by significant loss of protein in the urine causing hypoalbuminemia and edema. In general, ∼15% of childhood-onset cases do not respond to steroid therapy and are classified as steroid-resistant NS (SRNS). In ∼30% of cases with SRNS, a causative mutation can be detected in one of 44 monogenic SRNS genes. The gene LAMA5 encodes laminin-α5, an essential component of the glomerular basement membrane. Mice with a hypomorphic mutation in the orthologous gene Lama5 develop proteinuria and hematuria. METHODS: To identify additional monogenic causes of NS, we performed whole exome sequencing in 300 families with pediatric NS. In consanguineous families we applied homozygosity mapping to identify genomic candidate loci for the underlying recessive mutation. RESULTS: In three families, in whom mutations in known NS genes were excluded, but in whom a recessive, monogenic cause of NS was strongly suspected based on pedigree information, we identified homozygous variants of unknown significance (VUS) in the gene LAMA5. While all affected individuals had nonsyndromic NS with an early onset of disease, their clinical outcome and response to immunosuppressive therapy differed notably. CONCLUSION: We here identify recessive VUS in the gene LAMA5 in patients with partially treatment-responsive NS. More data will be needed to determine the impact of these VUS in disease management. However, familial occurrence of disease, data from genetic mapping and a mouse model that recapitulates the NS phenotypes suggest that these genetic variants may be inherited factors that contribute to the development of NS in pediatric patients.


Asunto(s)
Secuenciación del Exoma/métodos , Inmunosupresores/uso terapéutico , Laminina/genética , Mutación , Síndrome Nefrótico/genética , Adolescente , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Homocigoto , Humanos , Lactante , Recién Nacido , Masculino , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/patología , Linaje , Fenotipo , Pronóstico , Adulto Joven
14.
J Clin Invest ; 128(10): 4313-4328, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179222

RESUMEN

Steroid-resistant nephrotic syndrome (SRNS) almost invariably progresses to end-stage renal disease. Although more than 50 monogenic causes of SRNS have been described, a large proportion of SRNS remains unexplained. Recently, it was discovered that mutations of NUP93 and NUP205, encoding 2 proteins of the inner ring subunit of the nuclear pore complex (NPC), cause SRNS. Here, we describe mutations in genes encoding 4 components of the outer rings of the NPC, namely NUP107, NUP85, NUP133, and NUP160, in 13 families with SRNS. Using coimmunoprecipitation experiments, we showed that certain pathogenic alleles weakened the interaction between neighboring NPC subunits. We demonstrated that morpholino knockdown of nup107, nup85, or nup133 in Xenopus disrupted glomerulogenesis. Re-expression of WT mRNA, but not of mRNA reflecting mutations from SRNS patients, mitigated this phenotype. We furthermore found that CRISPR/Cas9 knockout of NUP107, NUP85, or NUP133 in podocytes activated Cdc42, an important effector of SRNS pathogenesis. CRISPR/Cas9 knockout of nup107 or nup85 in zebrafish caused developmental anomalies and early lethality. In contrast, an in-frame mutation of nup107 did not affect survival, thus mimicking the allelic effects seen in humans. In conclusion, we discovered here that mutations in 4 genes encoding components of the outer ring subunits of the NPC cause SRNS and thereby provide further evidence that specific hypomorphic mutations in these essential genes cause a distinct, organ-specific phenotype.


Asunto(s)
Síndrome Nefrótico/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Xenopus/genética , Xenopus laevis , Pez Cebra , Proteínas de Pez Cebra/genética
15.
Am J Med Genet A ; 176(11): 2460-2465, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30079490

RESUMEN

Galloway-Mowat syndrome (GAMOS) is a phenotypically heterogeneous disorder characterized by neurodevelopmental defects combined with renal-glomerular disease, manifesting with proteinuria. To identify additional monogenic disease causes, we here performed whole exome sequencing (WES), linkage analysis, and homozygosity mapping in three affected siblings of an Indian family with GAMOS. Applying established criteria for variant filtering, we identify a novel homozygous splice site mutation in the gene WDR4 as the likely disease-causing mutation in this family. In line with previous reports, we observe growth deficiency, microcephaly, developmental delay, and intellectual disability as phenotypic features resulting from WDR4 mutations. However, the newly identified allele additionally gives rise to proteinuria and nephrotic syndrome, a phenotype that was never reported in patients with WDR4 mutations. Our data thus expand the phenotypic spectrum of WDR4 mutations by demonstrating that, depending on the specific mutated allele, a renal phenotype may be present. This finding suggests that GAMOS may occupy a phenotypic spectrum with other microcephalic diseases. Furthermore, WDR4 is an additional example of a gene that encodes a tRNA modifying enzyme and gives rise to GAMOS, if mutated. Our findings thereby support the recent observation that, like neurons, podocytes of the renal glomerulus are particularly vulnerable to cellular defects resulting from altered tRNA modifications.


Asunto(s)
Proteínas de Unión al GTP/genética , Hernia Hiatal/genética , Microcefalia/genética , Mutación , Nefrosis/genética , Adolescente , Niño , Preescolar , Genes Recesivos , Humanos , Secuenciación del Exoma
16.
J Am Soc Nephrol ; 29(9): 2348-2361, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30143558

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of kidney disease in the first three decades of life. Previous gene panel studies showed monogenic causation in up to 12% of patients with CAKUT. METHODS: We applied whole-exome sequencing to analyze the genotypes of individuals from 232 families with CAKUT, evaluating for mutations in single genes known to cause human CAKUT and genes known to cause CAKUT in mice. In consanguineous or multiplex families, we additionally performed a search for novel monogenic causes of CAKUT. RESULTS: In 29 families (13%), we detected a causative mutation in a known gene for isolated or syndromic CAKUT that sufficiently explained the patient's CAKUT phenotype. In three families (1%), we detected a mutation in a gene reported to cause a phenocopy of CAKUT. In 15 of 155 families with isolated CAKUT, we detected deleterious mutations in syndromic CAKUT genes. Our additional search for novel monogenic causes of CAKUT in consanguineous and multiplex families revealed a potential single, novel monogenic CAKUT gene in 19 of 232 families (8%). CONCLUSIONS: We identified monogenic mutations in a known human CAKUT gene or CAKUT phenocopy gene as the cause of disease in 14% of the CAKUT families in this study. Whole-exome sequencing provides an etiologic diagnosis in a high fraction of patients with CAKUT and will provide a new basis for the mechanistic understanding of CAKUT.


Asunto(s)
Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/epidemiología , Linaje , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Animales , Humanos , Incidencia , Riñón/anomalías , Ratones , Fenotipo , Pronóstico , Medición de Riesgo , Sensibilidad y Especificidad , Distribución por Sexo , Sistema Urinario/anomalías , Anomalías Urogenitales/epidemiología , Reflujo Vesicoureteral/epidemiología
17.
Nat Commun ; 9(1): 1960, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773874

RESUMEN

No efficient treatment exists for nephrotic syndrome (NS), a frequent cause of chronic kidney disease. Here we show mutations in six different genes (MAGI2, TNS2, DLC1, CDK20, ITSN1, ITSN2) as causing NS in 17 families with partially treatment-sensitive NS (pTSNS). These proteins interact and we delineate their roles in Rho-like small GTPase (RLSG) activity, and demonstrate deficiency for mutants of pTSNS patients. We find that CDK20 regulates DLC1. Knockdown of MAGI2, DLC1, or CDK20 in cultured podocytes reduces migration rate. Treatment with dexamethasone abolishes RhoA activation by knockdown of DLC1 or CDK20 indicating that steroid treatment in patients with pTSNS and mutations in these genes is mediated by this RLSG module. Furthermore, we discover ITSN1 and ITSN2 as podocytic guanine nucleotide exchange factors for Cdc42. We generate Itsn2-L knockout mice that recapitulate the mild NS phenotype. We, thus, define a functional network of RhoA regulation, thereby revealing potential therapeutic targets.


Asunto(s)
Resistencia a Medicamentos/genética , Glucocorticoides/farmacología , Síndrome Nefrótico/tratamiento farmacológico , Mapas de Interacción de Proteínas/genética , Proteína de Unión al GTP rhoA/genética , Adulto , Animales , Niño , Preescolar , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Glucocorticoides/uso terapéutico , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Mutación , Síndrome Nefrótico/genética , Linaje , Podocitos , ARN Interferente Pequeño/metabolismo , Resultado del Tratamiento , Secuenciación del Exoma , Proteína de Unión al GTP rhoA/metabolismo
18.
Hypertension ; 71(4): 691-699, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29483232

RESUMEN

Midaortic syndrome (MAS) is a rare cause of severe childhood hypertension characterized by narrowing of the abdominal aorta in children and is associated with extensive vascular disease. It may occur as part of a genetic syndrome, such as neurofibromatosis, or as consequence of a pathological inflammatory disease. However, most cases are considered idiopathic. We hypothesized that in a high percentage of these patients, a monogenic cause of disease may be detected by evaluating whole exome sequencing data for mutations in 1 of 38 candidate genes previously described to cause vasculopathy. We studied a cohort of 36 individuals from 35 different families with MAS by exome sequencing. In 15 of 35 families (42.9%), we detected likely causal dominant mutations. In 15 of 35 (42.9%) families with MAS, whole exome sequencing revealed a mutation in one of the genes previously associated with vascular disease (NF1, JAG1, ELN, GATA6, and RNF213). Ten of the 15 mutations have not previously been reported. This is the first report of ELN, RNF213, or GATA6 mutations in individuals with MAS. Mutations were detected in NF1 (6/15 families), JAG1 (4/15 families), ELN (3/15 families), and one family each for GATA6 and RNF213 Eight individuals had syndromic disease and 7 individuals had isolated MAS. Whole exome sequencing can provide conclusive molecular genetic diagnosis in a high fraction of individuals with syndromic or isolated MAS. Establishing an etiologic diagnosis may reveal genotype/phenotype correlations for MAS in the future and should, therefore, be performed routinely in MAS.


Asunto(s)
Estenosis de la Válvula Aórtica , Hipertensión , Proteína Jagged-1/genética , Neurofibromatosis , Neurofibromina 1/genética , Adolescente , Aorta Abdominal/patología , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/genética , Niño , Preescolar , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Humanos , Hipertensión/diagnóstico , Hipertensión/genética , Masculino , Mutación , Neurofibromatosis/diagnóstico , Neurofibromatosis/genética , Linaje , Síndrome , Estados Unidos , Secuenciación del Exoma/métodos
19.
Kidney Int ; 93(1): 204-213, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28893421

RESUMEN

The incidence of nephrolithiasis continues to rise. Previously, we showed that a monogenic cause could be detected in 11.4% of individuals with adult-onset nephrolithiasis or nephrocalcinosis and in 16.7-20.8% of individuals with onset before 18 years of age, using gene panel sequencing of 30 genes known to cause nephrolithiasis/nephrocalcinosis. To overcome the limitations of panel sequencing, we utilized whole exome sequencing in 51 families, who presented before age 25 years with at least one renal stone or with a renal ultrasound finding of nephrocalcinosis to identify the underlying molecular genetic cause of disease. In 15 of 51 families, we detected a monogenic causative mutation by whole exome sequencing. A mutation in seven recessive genes (AGXT, ATP6V1B1, CLDN16, CLDN19, GRHPR, SLC3A1, SLC12A1), in one dominant gene (SLC9A3R1), and in one gene (SLC34A1) with both recessive and dominant inheritance was detected. Seven of the 19 different mutations were not previously described as disease-causing. In one family, a causative mutation in one of 117 genes that may represent phenocopies of nephrolithiasis-causing genes was detected. In nine of 15 families, the genetic diagnosis may have specific implications for stone management and prevention. Several factors that correlated with the higher detection rate in our cohort were younger age at onset of nephrolithiasis/nephrocalcinosis, presence of multiple affected members in a family, and presence of consanguinity. Thus, we established whole exome sequencing as an efficient approach toward a molecular genetic diagnosis in individuals with nephrolithiasis/nephrocalcinosis who manifest before age 25 years.


Asunto(s)
Secuenciación del Exoma , Mutación , Nefrocalcinosis/genética , Nefrolitiasis/genética , Adolescente , Edad de Inicio , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Estudios de Asociación Genética , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Herencia , Humanos , Lactante , Masculino , Nefrocalcinosis/diagnóstico por imagen , Nefrocalcinosis/epidemiología , Nefrolitiasis/diagnóstico por imagen , Nefrolitiasis/epidemiología , Linaje , Fenotipo , Valor Predictivo de las Pruebas , Pronóstico , Factores de Riesgo , Tomografía Computarizada por Rayos X , Ultrasonografía , Adulto Joven
20.
Pediatr Nephrol ; 33(2): 305-314, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28921387

RESUMEN

BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of end-stage renal disease (ESRD) among patients manifesting at under 25 years of age. We performed mutation analysis using a high-throughput PCR-based microfluidic technology in 24 single-gene causes of SRNS in a cohort of 72 families, who presented with SRNS before the age of 25 years. METHODS: Within an 18-month interval, we obtained DNA samples, pedigree information, and clinical information from 77 consecutive children with SRNS from 72 different families seen at Boston Children's Hospital (BCH). Mutation analysis was completed by combining high-throughput multiplex PCR with next-generation sequencing. We analyzed the sequences of 18 recessive and 6 dominant genes of SRNS in all 72 families for disease-causing variants. RESULTS: We identified the disease-causing mutation in 8 out of 72 (11.1%) families. Mutations were detected in the six genes: NPHS1 (2 out of 72), WT1 (2 out of 72), NPHS2, MYO1E, TRPC6, and INF2. Median age at onset was 4.1 years in patients without a mutation (range 0.5-18.8), and 3.2 years in those in whom the causative mutation was detected (range 0.1-14.3). Mutations in dominant genes presented with a median onset of 4.5 years (range 3.2-14.3). Mutations in recessive genes presented with a median onset of 0.5 years (range 0.1-3.2). CONCLUSION: Our molecular genetic diagnostic study identified underlying monogenic causes of steroid-resistant nephrotic syndrome in ~11% of patients with SRNS using a cost-effective technique. We delineated some of the therapeutic, diagnostic, and prognostic implications. Our study confirms that genetic testing is indicated in pediatric patients with SRNS.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Síndrome Nefrótico/congénito , Adolescente , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Síndrome Nefrótico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...