Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Adv Sci (Weinh) ; : e2308900, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159065

RESUMEN

Heart failure (HF) is a prevalent cardiovascular disease with significant morbidity and mortality rates worldwide. Due to the intricate structure of the heart, diverse cell types, and the complex pathogenesis of HF, further in-depth investigation into the underlying mechanisms  is required. The elucidation of the heterogeneity of cardiomyocytes and the intercellular communication network is particularly important. Traditional high-throughput sequencing methods provide an average measure of gene expression, failing to capture the "heterogeneity" between cells and impacting the accuracy of gene function knowledge. In contrast, single-cell sequencing techniques allow for the amplification of the entire genome or transcriptome at the individual cell level, facilitating the examination of gene structure and expression with unparalleled precision. This approach offers valuable insights into disease mechanisms, enabling the identification of changes in cellular components and gene expressions during hypertrophy associated with HF. Moreover, it reveals distinct cell populations and their unique roles in the HF microenvironment, providing a comprehensive understanding of the cellular landscape that underpins HF pathogenesis. This review focuses on the insights provided by single-cell sequencing techniques into the mechanisms underlying HF and discusses the challenges encountered in current cardiovascular research.

2.
Sci Rep ; 14(1): 15683, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977794

RESUMEN

We explored physiological effects of the sodium-glucose co-transporter-2 inhibitor empagliflozin on intact experimentally hypertrophic murine hearts following transverse aortic constriction (TAC). Postoperative drug (2-6 weeks) challenge resulted in reduced late Na+ currents, and increased phosphorylated (p-)CaMK-II and Nav1.5 but not total (t)-CaMK-II, and Na+/Ca2+ exchanger expression, confirming previous cardiomyocyte-level reports. It rescued TAC-induced reductions in echocardiographic ejection fraction and fractional shortening, and diastolic anterior and posterior wall thickening. Dual voltage- and Ca2+-optical mapping of Langendorff-perfused hearts demonstrated that empagliflozin rescued TAC-induced increases in action potential durations at 80% recovery (APD80), Ca2+ transient peak signals and durations at 80% recovery (CaTD80), times to peak Ca2+ (TTP100) and Ca2+ decay constants (Decay30-90) during regular 10-Hz stimulation, and Ca2+ transient alternans with shortening cycle length. Isoproterenol shortened APD80 in sham-operated and TAC-only hearts, shortening CaTD80 and Decay30-90 but sparing TTP100 and Ca2+ transient alternans in all groups. All groups showed similar APD80, and TAC-only hearts showed greater CaTD80, heterogeneities following isoproterenol challenge. Empagliflozin abolished or reduced ventricular tachycardia and premature ventricular contractions and associated re-entrant conduction patterns, in isoproterenol-challenged TAC-operated hearts following successive burst pacing episodes. Empagliflozin thus rescues TAC-induced ventricular hypertrophy and systolic functional, Ca2+ homeostatic, and pro-arrhythmogenic changes in intact hearts.


Asunto(s)
Compuestos de Bencidrilo , Calcio , Glucósidos , Homeostasis , Animales , Compuestos de Bencidrilo/farmacología , Glucósidos/farmacología , Ratones , Calcio/metabolismo , Homeostasis/efectos de los fármacos , Masculino , Potenciales de Acción/efectos de los fármacos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/cirugía , Ratones Endogámicos C57BL , Isoproterenol/farmacología , Modelos Animales de Enfermedad
3.
Front Immunol ; 15: 1402468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799471

RESUMEN

Ischemic heart disease (IHD) is a leading cause of disability and death worldwide, with immune regulation playing a crucial role in its pathogenesis. Various immune cells are involved, and as one of the key immune cells residing in the heart, macrophages play an indispensable role in the inflammatory and reparative processes during cardiac ischemia. Exosomes, extracellular vesicles containing lipids, nucleic acids, proteins, and other bioactive molecules, have emerged as important mediators in the regulatory functions of macrophages and hold promise as a novel therapeutic target for IHD. This review summarizes the regulatory mechanisms of different subsets of macrophages and their secreted exosomes during cardiac ischemia over the past five years. It also discusses the current status of clinical research utilizing macrophages and their exosomes, as well as strategies to enhance their therapeutic efficacy through biotechnology. The aim is to provide valuable insights for the treatment of IHD.


Asunto(s)
Exosomas , Macrófagos , Isquemia Miocárdica , Exosomas/metabolismo , Exosomas/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Isquemia Miocárdica/inmunología , Isquemia Miocárdica/metabolismo , Animales
4.
Int J Med Sci ; 21(7): 1366-1377, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818469

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) leads to coronavirus disease-2019 (COVID-19) which can cause severe cardiovascular complications including myocardial injury, arrhythmias, acute coronary syndrome and others. Among these complications, arrhythmias are considered serious and life-threatening. Although arrhythmias have been associated with factors such as direct virus invasion leading to myocardial injury, myocarditis, immune response disorder, cytokine storms, myocardial ischemia/hypoxia, electrolyte abnormalities, intravascular volume imbalances, drug interactions, side effects of COVID-19 vaccines and autonomic nervous system dysfunction, the exact mechanisms of arrhythmic complications in patients with COVID-19 are complex and not well understood. In the present review, the literature was extensively searched to investigate the potential mechanisms of arrhythmias in patients with COVID-19. The aim of the current review is to provide clinicians with a comprehensive foundation for the prevention and treatment of arrhythmias associated with long COVID-19.


Asunto(s)
Arritmias Cardíacas , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/complicaciones , COVID-19/inmunología , COVID-19/virología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/virología , Arritmias Cardíacas/fisiopatología
5.
Biochem Biophys Res Commun ; 720: 150105, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754163

RESUMEN

BACKGROUND: Dexmedetomidine (DEX), a highly selective α2-adrenoceptor agonist, can decrease the incidence of arrhythmias, such as catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the underlying mechanisms by which DEX affects cardiac electrophysiological function remain unclear. METHODS: Ryanodine receptor (RyR2) heterozygous R2474S mice were used as a model for CPVT. WT and RyR2R2474S/+ mice were treated with isoproterenol (ISO) and DEX, and electrocardiograms were continuously monitored during both in vivo and ex vivo experiments. Dual-dye optical mapping was used to explore the anti-arrhythmic mechanism of DEX. RESULTS: DEX significantly reduced the occurrence and duration of ISO-induced of VT/VF in RyR2R2474S/+ mice in vivo and ex vivo. DEX remarkably prolonged action potential duration (APD80) and calcium transient duration (CaTD80) in both RyR2R2474S/+ and WT hearts, whereas it reduced APD heterogeneity and CaT alternans in RyR2R2474S/+ hearts. DEX inhibited ectopy and reentry formation, and stabilized voltage-calcium latency. CONCLUSION: DEX exhibited an antiarrhythmic effect through stabilizing membrane voltage and intracellular Ca2+. DEX can be used as a beneficial perioperative anesthetic for patients with CPVT or other tachy-arrhythmias.


Asunto(s)
Arritmias Cardíacas , Calcio , Dexmedetomidina , Canal Liberador de Calcio Receptor de Rianodina , Animales , Dexmedetomidina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Calcio/metabolismo , Ratones , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/genética , Potenciales de la Membrana/efectos de los fármacos , Isoproterenol/farmacología , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/tratamiento farmacológico , Antiarrítmicos/farmacología , Masculino , Potenciales de Acción/efectos de los fármacos , Ratones Endogámicos C57BL
6.
Front Pharmacol ; 15: 1373446, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711994

RESUMEN

Pin1 is a member of the peptidyl-prolyl cis/trans isomerase subfamily and is widely expressed in various cell types and tissues. Alterations in Pin1 expression levels play pivotal roles in both physiological processes and multiple pathological conditions, especially in the onset and progression of kidney diseases. Herein, we present an overview of the role of Pin1 in the regulation of fibrosis, oxidative stress, and autophagy. It plays a significant role in various kidney diseases including Renal I/R injury, chronic kidney disease with secondary hyperparathyroidism, diabetic nephropathy, renal fibrosis, and renal cell carcinoma. The representative therapeutic agent Juglone has emerged as a potential treatment for inhibiting Pin1 activity and mitigating kidney disease. Understanding the role of Pin1 in kidney diseases is expected to provide new insights into innovative therapeutic interventions and strategies. Consequently, this review delves into the molecular mechanisms of Pin1 and its relevance in kidney disease, paving the way for novel therapeutic approaches.

7.
Int Immunopharmacol ; 133: 112075, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38663316

RESUMEN

Cuproptosis has recently been identified as a novel regulatory mechanism of cell death. It is characterized by the accumulation of copper in mitochondria and its binding to acylated proteins. These characteristics lead to the downregulation of iron-sulfur cluster proteins and protein toxicity stress, ultimately resulting in cell death. Cuproptosis is distinct from other types of cell death, including necrosis, apoptosis, ferroptosis, and pyroptosis. Cu induces oxidative stress damage, protein acylation, and the oligomerization of acylated TCA cycle proteins. These processes lead to the downregulation of iron-sulfur cluster proteins and protein toxicity stress, disrupting cellular Cu homeostasis, and causing cell death. Cuproptosis plays a significant role in the development and progression of various kidney diseases such as acute kidney injury, chronic kidney disease, diabetic nephropathy, kidney transplantation, and kidney stones. On the one hand, inducers of cuproptosis, such as disulfiram (DSF), chloroquinolone, and elesclomol facilitate cuproptosis by promoting cell oxidative stress. In contrast, inhibitors of Cu chelators, such as tetraethylenepentamine and tetrathiomolybdate, relieve these diseases by inhibiting apoptosis. To summarize, cuproptosis plays a significant role in the pathogenesis of kidney disease. This review comprehensively discusses the molecular mechanisms underlying cuproptosis and its significance in kidney diseases.


Asunto(s)
Cobre , Enfermedades Renales , Humanos , Cobre/metabolismo , Cobre/toxicidad , Animales , Enfermedades Renales/metabolismo , Estrés Oxidativo , Quelantes/uso terapéutico , Quelantes/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
8.
Nat Commun ; 14(1): 7801, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016975

RESUMEN

The heterogeneity of functional cardiomyocytes arises during heart development, which is essential to the complex and highly coordinated cardiac physiological function. Yet the biological and physiological identities and the origin of the specialized cardiomyocyte populations have not been fully comprehended. Here we report a previously unrecognised population of cardiomyocytes expressing Dbhgene encoding dopamine beta-hydroxylase in murine heart. We determined how these myocytes are distributed across the heart by utilising advanced single-cell and spatial transcriptomic analyses, genetic fate mapping and molecular imaging with computational reconstruction. We demonstrated that they form the key functional components of the cardiac conduction system by using optogenetic electrophysiology and conditional cardiomyocyte Dbh gene deletion models. We revealed their close relationship with sympathetic innervation during cardiac conduction system formation. Our study thus provides new insights into the development and heterogeneity of the mammalian cardiac conduction system by revealing a new cardiomyocyte population with potential catecholaminergic endocrine function.


Asunto(s)
Corazón , Miocitos Cardíacos , Ratones , Animales , Corazón/fisiología , Sistema de Conducción Cardíaco , Mamíferos , Perfilación de la Expresión Génica , Dopamina beta-Hidroxilasa
9.
Biomed Pharmacother ; 168: 115762, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897974

RESUMEN

Arrhythmia is one of the most common cardiovascular diseases. The search for new drugs to suppress various types of cardiac arrhythmias has always been the focus of attention. In the past decade, the screening of antiarrhythmic active substances from plants has received extensive attention. These natural compounds have obvious antiarrhythmic effects, and chemical modifications based on natural compounds have greatly increased their pharmacological properties. The chemical modification of botanical antiarrhythmic drugs is closely related to the development of new and promising drugs. Therefore, the structural characteristics and action targets of natural compounds with antiarrhythmic effects are reviewed in this paper, so that pharmacologists can select antiarrhythmic lead compounds from natural compounds based on the disease target - chemical structural characteristics.


Asunto(s)
Antiarrítmicos , Productos Biológicos , Humanos , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico
10.
Sci Data ; 10(1): 577, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666871

RESUMEN

The development of the cardiac conduction system (CCS) is essential for correct heart function. However, critical details on the cell types populating the CCS in the mammalian heart during the development remain to be resolved. Using single-cell RNA sequencing, we generated a large dataset of transcriptomes of ~0.5 million individual cells isolated from murine hearts at six successive developmental corresponding to the early, middle and late stages of heart development. The dataset provides a powerful library for studying the development of the heart's CCS and other cardiac components. Our initial analysis identified distinct cell types between 20 to 26 cell types across different stages, of which ten are involved in forming the CCS. Our dataset allows researchers to reuse the datasets for data mining and a wide range of analyses. Collectively, our data add valuable transcriptomic resources for further study of cardiac development, such as gene expression, transcriptional regulation and functional gene activity in developing hearts, particularly the CCS.


Asunto(s)
Corazón , Análisis de Expresión Génica de una Sola Célula , Animales , Ratones , Minería de Datos , Perfilación de la Expresión Génica , Biblioteca de Genes , Mamíferos , Análisis de Secuencia de ARN
11.
Redox Rep ; 28(1): 2246720, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37747066

RESUMEN

Diabetes mellitus (DM) is one of the most prevalent metabolic disorders that poses a global threat to human health. It can lead to complications in multiple organs and tissues, owing to its wide-ranging impact on the human body. Diabetic cardiomyopathy (DCM) is a specific cardiac manifestation of DM, which is characterized by heart failure in the absence of coronary heart disease, hypertension and valvular heart disease. Given that oxidative stress is a key factor in the pathogenesis of DCM, intervening to mitigate oxidative stress may serve as a therapeutic strategy for managing DCM. Naringenin is a natural product with anti-oxidative stress properties that can suppress oxidative damage by regulating various oxidative stress signaling pathways. In this review, we address the relationship between oxidative stress and its primary signaling pathways implicated in DCM, and explores the therapeutic potential of naringenin in DCM.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Flavanonas , Humanos , Antioxidantes/uso terapéutico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Estrés Oxidativo , Flavanonas/uso terapéutico
12.
Research (Wash D C) ; 6: 0187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426471

RESUMEN

Monocyte-to-M0/M1 macrophage differentiation with unclear molecular mechanisms is a pivotal cellular event in many cardiovascular diseases including atherosclerosis. Long non-coding RNAs (lncRNAs) are a group of protein expression regulators; however, the roles of monocyte-lncRNAs in macrophage differentiation and its related vascular diseases are still unclear. The study aims to investigate whether the novel leukocyte-specific lncRNA Morrbid could regulate macrophage differentiation and atherogenesis. We identified that Morrbid was increased in monocytes and arterial walls from atherosclerotic mouse and from patients with atherosclerosis. In cultured monocytes, Morrbid expression was markedly increased during monocyte to M0 macrophage differentiation with an additional increase during M0 macrophage-to-M1 macrophage differentiation. The differentiation stimuli-induced monocyte-macrophage differentiation and the macrophage activity were inhibited by Morrbid knockdown. Moreover, overexpression of Morrbid alone was sufficient to elicit the monocyte-macrophage differentiation. The role of Morrbid in monocyte-macrophage differentiation was also identified in vivo in atherosclerotic mice and was verified in Morrbid knockout mice. We identified that PI3-kinase/Akt was involved in the up-regulation of Morrbid expression, whereas s100a10 was involved in Morrbid-mediated effect on macrophage differentiation. To provide a proof of concept of Morrbid in pathogenesis of monocyte/macrophage-related vascular disease, we applied an acute atherosclerosis model in mice. The results revealed that overexpression of Morrbid enhanced but monocyte/macrophage-specific Morrbid knockout inhibited the monocytes/macrophages recruitment and atherosclerotic lesion formation in mice. The results suggest that Morrbid is a novel biomarker and a modulator of monocyte-macrophage phenotypes, which is involved in atherogenesis.

13.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220175, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37122207

RESUMEN

We illustrate use of induced pluripotent stem cells (iPSCs) as platforms for investigating cardiomyocyte phenotypes in a human family pedigree exemplified by novel heterozygous RYR2-A1855D and SCN10A-Q1362H variants occurring alone and in combination. The proband, a four-month-old boy, presented with polymorphic ventricular tachycardia. Genetic tests revealed double novel heterozygous RYR2-A1855D and SCN10A-Q1362H variants inherited from his father (F) and mother (M), respectively. His father showed ventricular premature beats; his mother was asymptomatic. Molecular biological characterizations demonstrated greater TNNT2 messenger RNA (mRNA) expression in the iPSCs-induced cardiomyocytes (iPS-CMs) than in the iPSCs. Cardiac troponin Ts became progressively organized but cytoplasmic RYR2 and SCN10A aggregations occurred in the iPS-CMs. Proband-specific iPS-CMs showed decreased RYR2 and SCN10A mRNA expression. The RYR2-A1855D variant resulted in premature spontaneous sarcoplasmic reticular Ca2+ transients, Ca2+ oscillations and increased action potential durations. SCN10A-Q1362H did not confer any specific phenotype. However, the combined heterozygous RYR2-A1855D and SCN10A-Q1362H variants in the proband iPS-CMs resulted in accentuated Ca2+ homeostasis disorders, action potential prolongation and susceptibility to early afterdepolarizations at high stimulus frequencies. These findings attribute the clinical phenotype in the proband to effects of the heterozygous RYR2 variant exacerbated by heterozygous SCN10A modification. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Asunto(s)
Células Madre Pluripotentes Inducidas , Taquicardia Ventricular , Humanos , Lactante , Masculino , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Homeostasis , Mutación , Canal de Sodio Activado por Voltaje NAV1.8/genética , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
14.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220312, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37122218

RESUMEN

Atrial fibrillation (AF) is the most common chronic arrhythmia presenting a heavy disease burden. We report a new approach for generating cardiomyocytes (CMs) resembling atrial cells from human-induced pluripotent stem cells (hiPSCs) using a combination of Gremlin 2 and retinoic acid treatment. More than 40% of myocytes showed rod-shaped morphology, expression of CM proteins (including ryanodine receptor 2, α-actinin-2 and F-actin) and striated appearance, all of which were broadly similar to the characteristics of adult atrial myocytes (AMs). Isolated myocytes were electrically quiescent until stimulated to fire action potentials with an AM profile and an amplitude of approximately 100 mV, arising from a resting potential of approximately -70 mV. Single-cell RNA sequence analysis showed a high level of expression of several atrial-specific transcripts including NPPA, MYL7, HOXA3, SLN, KCNJ4, KCNJ5 and KCNA5. Amplitudes of calcium transients recorded from spontaneously beating cultures were increased by the stimulation of α-adrenoceptors (activated by phenylephrine and blocked by prazosin) or ß-adrenoceptors (activated by isoproterenol and blocked by CGP20712A). Our new approach provides human AMs with mature characteristics from hiPSCs which will facilitate drug discovery by enabling the study of human atrial cell signalling pathways and AF. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Asunto(s)
Fibrilación Atrial , Células Madre Pluripotentes Inducidas , Adulto , Humanos , Miocitos Cardíacos/metabolismo , Diferenciación Celular/fisiología , Fibrilación Atrial/metabolismo , Receptores Adrenérgicos/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo
15.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220171, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37122223

RESUMEN

Ca2+-activated K+ channels are critical to cellular Ca2+ homeostasis and excitability; they couple intracellular Ca2+ and membrane voltage change. Of these, the small, 4-14 pS, conductance SK channels include three, KCNN1-3 encoded, SK1/KCa2.1, SK2/KCa2.2 and SK3/KCa2.3, channel subtypes with characteristic, EC50 ∼ 10 nM, 40 pM, 1 nM, apamin sensitivities. All SK channels, particularly SK2 channels, are expressed in atrial, ventricular and conducting system cardiomyocytes. Pharmacological and genetic modification results have suggested that SK channel block or knockout prolonged action potential durations (APDs) and effective refractory periods (ERPs) particularly in atrial, but also in ventricular, and sinoatrial, atrioventricular node and Purkinje myocytes, correspondingly affect arrhythmic tendency. Additionally, mitochondrial SK channels may decrease mitochondrial Ca2+ overload and reactive oxygen species generation. SK channels show low voltage but marked Ca2+ dependences (EC50 ∼ 300-500 nM) reflecting their α-subunit calmodulin (CaM) binding domains, through which they may be activated by voltage-gated or ryanodine-receptor Ca2+ channel activity. SK function also depends upon complex trafficking and expression processes and associations with other ion channels or subunits from different SK subtypes. Atrial and ventricular clinical arrhythmogenesis may follow both increased or decreased SK expression through decreased or increased APD correspondingly accelerating and stabilizing re-entrant rotors or increasing incidences of triggered activity. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Asunto(s)
Fibrilación Atrial , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Humanos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Fibrilación Atrial/metabolismo , Atrios Cardíacos/metabolismo , Potenciales de Acción/fisiología , Miocitos Cardíacos/metabolismo
16.
ACS Appl Mater Interfaces ; 15(1): 338-353, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36580409

RESUMEN

Dysregulation of superoxide anion (O2-) and hydrogen peroxide (H2O2) metabolism in the microenvironment of rheumatoid arthritis (RA) drives the feedback loops of TNF-α and IL-1ß thereby inducing an inflammatory storm between immune cells and joint tissue cells. Here, we combine nanoscale manganese dioxide (MnO2) with microvesicles derived from macrophage (MMV). The former possesses superoxide dismutase (SOD) and catalase (CAT)-like activities that can modulate this imbalance, and we amplify the enzyme-like activities by using the amorphous hollow mesoporous structure and surface modification. The latter is a natural endogenous component with the parent cell-like inflammatory homing ability and a unique function of transmitting information to surrounding and distant cells (″messenger function″), which helps amorphous hollow MnO2 (H-MnO2) nanozymes to cloak in the blood and reach the site of inflammation, where they can not only accumulate in activated macrophages but also pretend to be ″messengers″ that are utilized by fibroblast-like synoviocytes (FLS) and chondrocytes. In addition, we also load dexamethasone sodium phosphate (DSP) for helping the nanozymes work. Messenger nanozyme (MMV-MnO2@DSP) inherits the natural properties of MMV and mimics the enzymatic activity of SOD and CAT. It accumulates in activated macrophages to restore the metabolism of O2- and H2O2 while promoting repolarization and inhibits the feedback loops of TNF-α and IL-1ß among macrophages, fibroblast-like synoviocytes, and chondrocytes, leading to anti-rheumatoid arthritis effects in vitro and in vivo.


Asunto(s)
Artritis Reumatoide , Compuestos de Manganeso , Humanos , Compuestos de Manganeso/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Peróxido de Hidrógeno , Óxidos/farmacología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Superóxido Dismutasa , Fibroblastos/metabolismo , Células Cultivadas
17.
J Vis Exp ; (202)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38189464

RESUMEN

The pro-arrhythmic cardiac disorder catecholaminergic polymorphic ventricular tachycardia (CPVT) manifests as polymorphic ventricular tachycardia episodes following physical activity, stress, or catecholamine challenge, which can deteriorate into potentially fatal ventricular fibrillation. The mouse heart is a widespread species for modeling inherited cardiac arrhythmic diseases, including CPVT. Simultaneous optical mapping of transmembrane potential (Vm) and calcium transients (CaT) from Langendorff-perfused mouse hearts has the potential to elucidate mechanisms underlying arrhythmogenesis. Compared with the cellular level investigation, the optical mapping technique can test some electrophysiological parameters, such as the determination of activation, conduction velocity, action potential duration, and CaT duration. This paper presents the instrumentation setup and experimental procedure for high-throughput optical mapping of CaT and Vm in murine wild-type and heterozygous RyR2-R2474S/+ hearts, combined with programmed electrical pacing before and during the isoproterenol challenge. This approach has demonstrated a feasible and reliable method for mechanistically studying CPVT disease in an ex vivo mouse heart preparation.


Asunto(s)
Cardiopatías , Taquicardia Ventricular , Animales , Ratones , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Corazón , Calcio
18.
Biomed Pharmacother ; 153: 113438, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076553

RESUMEN

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and is an enormous burden on both patients and society. There is an urgent need for effective alternative therapeutic strategies for the treatment of DN, as medical treatment is currently limited. The anti-inflammatory, antioxidative, anti-apoptotic, and anti-fibrosis properties of curcumin, a polyphenol curcuminoid, have been demonstrated in research on diabetic nephropathy. The clinical and preclinical trials and mechanisms by which curcumin affects DN have been discussed in this review. A deeper understanding of the pharmacological effects of curcumin on diabetic nephropathy may provide new therapies to improve the development and occurrence of diabetic nephropathy.


Asunto(s)
Curcumina , Diabetes Mellitus , Nefropatías Diabéticas , Antiinflamatorios/farmacología , Curcumina/farmacología , Curcumina/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Diarilheptanoides , Humanos , Polifenoles/farmacología , Polifenoles/uso terapéutico
19.
Front Physiol ; 13: 779514, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665220

RESUMEN

Biological tissues are naturally three-dimensional (3D) opaque structures, which poses a major challenge for the deep imaging of spatial distribution and localization of specific cell types in organs in biomedical research. Here we present a 3D heart imaging reconstruction approach by combining an improved heart tissue-clearing technique with high-resolution light-sheet fluorescence microscopy (LSFM). We have conducted a three-dimensional and multi-scale volumetric imaging of the ultra-thin planes of murine hearts for up to 2,000 images per heart in x-, y-, and z three directions. High-resolution 3D volume heart models were constructed in real-time by the Zeiss Zen program. By using such an approach, we investigated detailed three-dimensional spatial distributions of two specific cardiomyocyte populations including HCN4 expressing pacemaker cells and Pnmt+ cell-derived cardiomyocytes by using reporter mouse lines Hcn4DreER/tdTomato and PnmtCre/ChR2-tdTomato. HCN4 is distributed throughout right atrial nodal regions (i.e., sinoatrial and atrioventricular nodes) and the superior-inferior vena cava axis, while Pnmt+ cell-derived cardiomyocytes show distinct ventral, left heart, and dorsal side distribution pattern. Our further electrophysiological analysis indicates that Pnmt + cell-derived cardiomyocytes rich left ventricular (LV) base is more susceptible to ventricular arrhythmia under adrenergic stress than left ventricular apex or right ventricle regions. Thus, our 3D heart imaging reconstruction approach provides a new solution for studying the geometrical, topological, and physiological characteristics of specific cell types in organs.

20.
Pharmaceutics ; 14(5)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35631529

RESUMEN

Drug-induced immune thrombocytopenia (DITP) often occurs in patients receiving many drug treatments simultaneously. However, clinicians usually fail to accurately distinguish which drugs can be plausible culprits. Despite significant advances in laboratory-based DITP testing, in vitro experimental assays have been expensive and, in certain cases, cannot provide a timely diagnosis to patients. To address these shortcomings, this paper proposes an efficient machine learning-based method for DITP toxicity prediction. A small dataset consisting of 225 molecules was constructed. The molecules were represented by six fingerprints, three descriptors, and their combinations. Seven classical machine learning-based models were examined to determine an optimal model. The results show that the RDMD + PubChem-k-NN model provides the best prediction performance among all the models, achieving an area under the curve of 76.9% and overall accuracy of 75.6% on the external validation set. The application domain (AD) analysis demonstrates the prediction reliability of the RDMD + PubChem-k-NN model. Five structural fragments related to the DITP toxicity are identified through information gain (IG) method along with fragment frequency analysis. Overall, as far as known, it is the first machine learning-based classification model for recognizing chemicals with DITP toxicity and can be used as an efficient tool in drug design and clinical therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...