Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(25): 37520-37531, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38777972

RESUMEN

Phosphogypsum is a kind of acidic industrial byproducts with high content of soluble phosphorus and fluorine pollutants, which requires to be pretreated when used as cementitious material to (partial) replace traditional Portland cement. In this study, five different pretreatment methods were proposed for comparative analysis to examine the pretreatment effect on the mechanical and environmental behaviors of ternary phosphogypsum (PG), ground granulated blast-furnace slag (GGBS), and lime (LM) mixed stabilizer. Series laboratory tests, including unconfined compressive strength (UCS), pH, phosphorus (P)/fluorine (F) leaching, scanning electron microscopy (SEM), and X-ray diffraction (XRD) tests, were conducted to comprehend the macro- and microscopic mechanism. The results show that it is essential to grind raw PG to finer powdered state, so that it reacts more easily and quickly with LM and water. In addition, it was noticed that the UCS and P/F leaching concentration are not only affected by the mixing proportion of the PG-GGBS-LM ternary stabilizer, but also by the curing duration. The UCS increases rapidly from initial curing period and then grows slowly after 28 days of curing. From the perspective of strength evolution, mixing proportion of PG: GGBS: LM = 15:80:5 is optimal, but considering the economy and environmental related issues, PG: GGBS: LM = 30:65:5 was regarded as a more attractive choice. The findings can provide a reference for the selection of pretreatment methods and design of PG-based cementitious materials suited for stabilized soils.


Asunto(s)
Fósforo , Fósforo/química , Materiales de Construcción , Difracción de Rayos X , Compuestos de Calcio/química , Óxidos/química , Microscopía Electrónica de Rastreo , Sulfato de Calcio/química
2.
Int Urol Nephrol ; 54(6): 1331-1342, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34643859

RESUMEN

PURPOSE: The pathological process of sepsis involves multiple system organs, including kidney. Sepsis-induced acute kidney injury (AKI) has high morbidity and high mortality. Overproduced inflammatory factors contribute to the occurrence and evolvement of AKI. Here, the role and underlying mechanism of tripartite motif containing 3 (TRIM3) and in AKI was explored. METHODS: Lipopolysaccharide (LPS) was used for constructing AKI model both in vitro and in vivo. RT-PCR and western blot were performed to detect TRIM3, Interferon regulatory factor 3 (IRF3) and NLRP3-ASC-Caspase1 inflammasome. Upon selectively regulating the TRIM3 or IRF3 expression, the proliferation, apoptosis and inflammatory response were detected. The interaction between TRIM3 and IRF3 was verified by Immunoprecipitation (IP). RESULTS: TRIM3 was down-regulated in mediated injury renal tubular epithelial cell line HK-2 treated with LPS. Overexpression of TRIM3 promoted cell viability and reduced apoptosis. In addition, overexpression of TRIM3 inhibited the expression of inflammatory factors (IL-1ß, IL-6, TNF-α and IL-18), dampened the phosphorylation of IRF3 and repressed NLRP3 inflammasome activation. Furthermore, TRIM3 overexpression significantly eased the LPS-induced damage on AKI rat model and decreased the serum creatinine and urea nitrogen levels in rat kidney tissues. The results of immunohistochemistry (IHC) and Western blot manifested that TRIM3 was increased dramatically after TRIM3 was overexpressed in the rat kidney tissues, while IRF3 and NLRP3-ASC-Caspase1 inflammasome were significantly repressed following TRIM3 upregulation in the kidney tissues. Mechanistically, TRIM3 interacted with IRF3 and inhibited its phosphorylation. CONCLUSION: Overexpression of TRIM3 protected against LPS-induced AKI by inhibiting the IRF3 pathway and NLRP3 inflammasome activation.


Asunto(s)
Lesión Renal Aguda , Sepsis , Lesión Renal Aguda/patología , Animales , Proteínas Portadoras/efectos adversos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Femenino , Humanos , Inflamasomas/metabolismo , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Lipopolisacáridos/farmacología , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas
3.
PLoS One ; 16(2): e0246387, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33596213

RESUMEN

Many factors impact earthquake-induced liquefaction, and there are complex interactions between them. Therefore, rationally identifying the key factors and clarifying their direct and indirect effects on liquefaction help to reduce the complexity of the predictive model and improve its predictive performance. This information can also help researchers understand the liquefaction phenomenon more clearly. In this paper, based on a shear wave velocity (Vs) database, 12 key factors are quantitatively identified using a correlation analysis and the maximum information coefficient (MIC) method. Subsequently, the regression method combined with the MIC method is used to construct a multiple causal path model without any assumptions based on the key factors for clarifying their direct and mediation effects on liquefaction. The results show that earthquake parameters produce more important influences on the occurrence of liquefaction than soil properties and site conditions, whereas deposit type, soil type, and deposit age produce relatively small impacts on liquefaction. In the multiple causal path model, the influence path of each factor on liquefaction becomes very clear. Among the key factors, in addition to the duration of the earthquake and Vs, other factors possess multiple mediation paths that affect liquefaction; the thickness of the critical layer and thickness of the unsaturated zone between the groundwater table and capping layer are two indirect-only mediators, and the fines content and thickness of the impermeable capping layer induce suppressive effects on liquefaction. In addition, the constructed causal model can provide a logistic regression model and a structure of the Bayesian network for predicting liquefaction. Five-fold cross-validation is used to compare and verify their predictive performances.


Asunto(s)
Teorema de Bayes , Terremotos , Suelo/química , Modelos Teóricos
4.
Chemosphere ; 224: 103-110, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30818188

RESUMEN

Arsenic mobility in soils, sediments and groundwater systems is strongly controlled by adsorption occurring at iron oxide/water interfaces, and the extent of this adsorption may be influenced by the presence of natural organic matter (NOM). This study aims to investigate the adsorption of As(III) and As(V) onto coprecipitates made with ferrihydrite (Fh) and humic acid (HA) with two organic carbon (OC) loadings of 5 and 15 wt% OC. We show that the coprecipitation of HA with Fh can significantly reduce the retention of both As(III) and As(V) over a wide pH range (4-11), and with increased OC loading, there is reduced arsenic adsorption. On pure Fh, As(III) is adsorbed to a greater extent than As(V) at pH > 6.5 (the crossover pH), whereas the crossover pH shifts to more acidic pH in the presence of HA, implying that the binding of As(III) is more favorable than As(V) in the presence of NOM. Both As(III) and As(V) are complexed with the ferric hydroxyl functional groups, and no ternary Fh-HA-As complexes are detected. We observe that ∼40% of the adsorbed As(III) is oxidized to As(V) on pure Fh, compared to only ∼29% of As(III) oxidation on the Fh-HA coprecipitate, indicating that NOM hinders As(III) oxidation on iron (hydr)oxide. The results of this study suggest that NOM interacts with arsenic in ways that promote arsenic mobility and especially promote the mobility of arsenate relative to arsenite, which is of great significance for evaluating the migration and bioavailability of arsenic in both natural and contaminated environments.


Asunto(s)
Arseniatos/química , Arsenitos/química , Compuestos Férricos/química , Adsorción , Precipitación Química , Sustancias Húmicas , Minerales/química , Oxidación-Reducción
5.
J Am Chem Soc ; 139(12): 4506-4512, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28263580

RESUMEN

Heteroatom doping of nanocarbon films can efficiently boost the pseudocapacitance of micro-supercapacitors (MSCs); however, wafer-scale fabrication of sulfur-doped graphene films with a tailored thickness and homogeneous doping for MSCs remains a great challenge. Here we demonstrate the bottom-up fabrication of continuous, uniform, and ultrathin sulfur-doped graphene (SG) films, derived from the peripherical trisulfur-annulated hexa-peri-hexabenzocoronene (SHBC), for ultrahigh-rate MSCs (SG-MSCs) with landmark volumetric capacitance. The SG film was prepared by thermal annealing of the spray-coated SHBC-based film, with assistance of a thin Au protecting layer, at 800 °C for 30 min. SHBC with 12 phenylthio groups decorated at the periphery is critical as a precursor for the formation of the continuous and ultrathin SG film, with a uniform thickness of ∼10.0 nm. Notably, the as-produced all-solid-state planar SG-MSCs exhibited a highly stable pseudocapacitive behavior with a volumetric capacitance of ∼582 F cm-3 at 10 mV s-1, excellent rate capability with a remarkable capacitance of 8.1 F cm-3 even at an ultrahigh rate of 2000 V s-1, ultrafast frequency response with a short time constant of 0.26 ms, and ultrahigh power density of ∼1191 W cm-3. It is noteworthy that these values obtained are among the best values for carbon-based MSCs reported to date.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...