Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cancer ; 15(10): 3010-3023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706909

RESUMEN

Given the heterogeneity of tumors, there is an urgent need for accurate prognostic parameters in prostate cancer (PCa) patients. Lipid metabolism (LM) reprogramming and oxidative stress (OS) play a vital role in the progression of PCa. In this work, we identified five LM-OS-related genes (including ACOX2, PPRAGC1A, PTGS1, PTGS2, and HAO1) associated with the biochemical recurrence (BCR) of PCa. Subsequently, a prognostic signature was established based on these five genes. Kaplan-Meier survival estimates, receiver operating characteristic curves, and relationship analysis between risk score and clinical characters were applied to measure the robustness of the signature in an external cohort. A nomogram of risk score combined with clinical characteristics was constructed for clinical application. Functional enrichment analysis suggested that the underlying mechanism related to the signature included the calcium signaling, lipid transport, and cell cycle signaling pathways. Furthermore, WEE1 inhibitor was identified as a potential agent related to the cell cycle for high-risk patients. The mRNA expression and the prognostic value of the five genes were determined, and ACOX2 was identified as the key gene related to the prognostic signature. The protein expression of ACOX2 was measured in a prostate tissue microarray through an immunohistochemistry assay, confirming the bioinformatics results. By constructing the ACOX2-overexpressing PCa cell lines PC-3 and 22Rv1, the biological function of PCa cells was investigated. The cell viability, colony formation, migration, and invasion ability of PCa cell lines overexpressing ACOX2 were hindered. Decreased cellular lipid content and elevated cellular ROS content were observed in ACOX2-overexpressing PCa cell lines with reduced G2/M phases. In conclusion, this work presents the first prognostic signature specifically focused on LM-OS for PCa. ACOX2 could serve as a favorable indicator for the BCR in PCa. Further experiments are required to identify the potential underlying mechanism.

2.
Int Immunopharmacol ; 132: 112017, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599101

RESUMEN

BACKGROUND: Establishment of a reliable prognostic model and identification of novel biomarkers are urgently needed to develop precise therapy strategies for clear cell renal cell carcinoma (ccRCC). Stress response stated T cells (Tstr) are a new T-cell subtype, which are related to poor disease stage and immunotherapy response in various cancers. METHODS: 10 machine-learning algorithms and their combinations were applied in this work. A stable Tstr-related score (TCs) was constructed to predict the outcomes and PD-1 blockade treatment response in ccRCC patients. A nomogram based on TCs for personalized prediction of patient prognosis was constructed. Functional enrichment analysis and TimiGP algorithm were used to explore the underlying role of Tstr in ccRCC. The key TCs-related gene was identified by comprehensive analysis, and the bioinformatics results were verified by immunohistochemistry using a tissue microarray. RESULTS: A robust TCs was constructed and validated in four independent cohorts. TCs accurately predicted the prognosis and PD-1 blockade treatment response in ccRCC patients. The novel nomogram was able to precisely predict the outcomes of ccRCC patients. The underlying biological process of Tstr was related to acute inflammatory response and acute-phase response. Mast cells were identified to be involved in the role of Tstr as a protective factor in ccRCC. TNFS13B was shown to be the key TCs-related gene, which was an independent predictor of unfavorable prognosis. The protein expression analysis of TNFSF13B was consistent with the mRNA analysis results. High expression of TNFSF13B was associated with poor response to PD-1 blockade treatment. CONCLUSIONS: This study provides a Tstr cell-related score for predicting outcomes and PD-1 blockade therapy response in ccRCC. Tstr cells may exert their pro-tumoral role in ccRCC, acting against mast cells, in the acute inflammatory tumor microenvironment. TNFSF13B could serve as a key biomarker related to TCs.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Aprendizaje Automático , Carcinoma de Células Renales/inmunología , Humanos , Neoplasias Renales/inmunología , Pronóstico , Masculino , Femenino , Nomogramas , Biomarcadores de Tumor/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Persona de Mediana Edad , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos T/inmunología
3.
Front Immunol ; 13: 1046790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505457

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a common aggressive malignant tumor of the urinary system. Given the heterogeneity of the tumor microenvironment, immunotherapy may not fully exert its role in the treatment of advanced patients. Long noncoding RNA (lncRNA) has been reported to be critically associated with the differentiation and maturation of tumor-infiltrating lymphocytes (TILs), which work against tumor cells. In this study, we identified 10 TIL-related lncRNAs (AL590094.1, LINC02027, LINC00460, AC147651.1, AC026401.3, LINC00944, LINC01615, AP000439.2, AL162586.1, and AC084876.1) by Pearson correlation, univariate Cox regression, Lasso regression, and multivariate Cox regression based on The Cancer Genome Atlas (TCGA) database. A risk score model was established based on these lncRNAs. Next, a nomogram was constructed to predict the overall survival. By employing differentially expressed genes (DEGs) between groups with high and low risk scores, gene ontology (GO) enrichment analysis was performed to identify the major biological processes (BP) related to immune DEGs. We analyzed the mutation data of the groups and demonstrated that SETD2 and BAP1 had the highest mutation frequency in the high-risk group. The "CIBERSORT" R package was used to detect the abundance of TILs in the groups. The expression of lymphocyte markers was compared. We also determined the expression of two lncRNAs (AC084876.1 and AC026401.3) and their relationship with lymphocyte markers in the kidney tissue of ccRCC patients and showed that there was a positive correlation between AC084876.1 and FoxP3. Proliferation, migration, and invasion of AC084876.1-downregulated ccRCC cell lines were inhibited, and the expression of PD-L1 and TGF-ß secretion decreased. To our knowledge, this is the first bioinformatics study to establish a prognostic model for ccRCC using TIL-related lncRNAs. These lncRNAs were associated with T-cell activities and may serve as biomarkers of disease prognosis.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Carcinoma de Células Renales/genética , Linfocitos Infiltrantes de Tumor , Pronóstico , Neoplasias Renales/genética , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...