Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 281: 116648, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964065

RESUMEN

The pollution of Pb2+ and Cd2+ in both irrigation water and soil, coupled with the scarcity of vital mineral nutrition, poses a significant hazard to the security and quality of agricultural products. An economical potassium feldspar-derived adsorbent (PFDA) was synthesized using potassium feldspar as the main raw material through ball milling-thermal activation technology to solve this problem. The synthesis process is cost-effective and the resulting adsorbent demonstrates high efficiency in removing Pb2+ and Cd2+ from water. The removal process is endothermic, spontaneous, and stochastic, and follows the quasi-second-order kinetics, intraparticle diffusion, and Langmuir model. The adsorption and elimination of Pb2+ and Cd2+ is largely dependent on monolayer chemical sorption. The maximum removal capacity of PFDA for Pb2+ and Cd2+ at room temperature is 417 and 56.3 mg·g-1, respectively, which is superior to most mineral-based adsorbents. The desorption of Pb2+/Cd2+ on PFDA is highly challenging at pH≥3, whereas PFDA and Pb2+/Cd2+ are recyclable at pH≤0.5. When Pb2+ and Cd2+ coexisted, Pb2+ was preferentially removed by PFDA. In the case of single adsorption, Pb2+ was mainly adsorbed onto PFDA as Pb2SiO4, PbSiO3·xH2O, Pb3SiO5, PbAl2O4, PbAl2SiO6, PbAl2Si2O8, Pb2SO5, and PbSO4, whereas Cd2+ was primarily adsorbed as CdSiO3, Cd2SiO4, and Cd3Al2Si3O12. After the complex adsorption, the main products were PbSiO3·xH2O, PbAl2Si2O8, Pb2SiO4, Pb4Al2Si2O11, Pb5SiO7, PbSO4, CdSiO3, and Cd3Al2Si3O12. The forms of mineral nutrients in single and complex adsorption were different. The main mechanisms by which PFDA removed Pb2+ and Cd2+ were chemical precipitation, complexation, electrostatic attraction, and ion exchange. In irrigation water, the elimination efficiencies of Pb2+ and Cd2+ by PFDA within 10 min were 96.0 % and 70.3 %, respectively, and the concentrations of K+, Si4+, Ca2+, and Mg2+ increased by 14.0 %, 12.4 %, 55.7 %, and 878 %, respectively, within 60 min. PFDA holds great potential to replace costly methods for treating heavy metal pollution and nutrient deficiency in irrigation water, offering a sustainable, cost-effective solution and paving a new way for the comprehensive utilization of potassium feldspar.


Asunto(s)
Riego Agrícola , Cadmio , Plomo , Contaminantes Químicos del Agua , Calidad del Agua , Adsorción , Contaminantes Químicos del Agua/química , Plomo/química , Cadmio/química , Riego Agrícola/métodos , Purificación del Agua/métodos , Metales Pesados/química , Compuestos de Potasio/química , Nutrientes , Cinética
2.
J Am Chem Soc ; 146(28): 19239-19248, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38949598

RESUMEN

Advanced in vitro diagnosis technologies are highly desirable in early detection, prognosis, and progression monitoring of diseases. Here, we engineer a multiplex protein biosensing strategy based on the tunable liquid confinement self-assembly of multi-material heterochains, which show improved sensitivity, throughput, and accuracy compared to standard ELISA kits. By controlling the material combination and the number of ligand nanoparticles (NPs), we observe robust near-field enhancement as well as both strong electromagnetic resonance in polymer-semiconductor heterochains. In particular, their optical signals show a linear response to the coordination number of the semiconductor NPs in a wide range. Accordingly, a visible nanophotonic biosensor is developed by functionalizing antibodies on central polymer chains that can identify target proteins attached to semiconductor NPs. This allows for the specific detection of multiple protein biomarkers from healthy people and pancreatic cancer patients in one step with an ultralow detection limit (1 pg/mL). Furthermore, rapid and high-throughput quantification of protein expression levels in diverse clinical samples such as buffer, urine, and serum is achieved by combining a neural network algorithm, with an average accuracy of 97.3%. This work demonstrates that the heterochain-based biosensor is an exemplary candidate for constructing next-generation diagnostic tools and suitable for many clinical settings.


Asunto(s)
Técnicas Biosensibles , Aprendizaje Automático , Humanos , Técnicas Biosensibles/métodos , Biomarcadores/análisis , Nanopartículas/química , Semiconductores , Ensayos Analíticos de Alto Rendimiento , Neoplasias Pancreáticas , Polímeros/química
3.
Plant Physiol Biochem ; 210: 108642, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643538

RESUMEN

Calmodulin-like proteins (CMLs) are unique Ca2+ sensors and play crucial roles in response to abiotic stress in plants. A salt-repressed PvCML9 from halophyte seashore paspalum (Paspalum vaginatum O. Swartz) was identified. PvCML9 was localized in the cytoplasm and nucleus and highly expressed in roots and stems. Overexpression of PvCML9 led to reduced salt tolerance in rice and seashore paspalum, whereas downregulating expression of PvCML9 showed increased salt tolerance in seashore paspalum as compared with the wild type (WT), indicating that PvCML9 regulated salt tolerance negatively. Na+ and K+ homeostasis was altered by PvCML9 expression. Lower level of Na+/K+ ratio in roots and shoots was maintained in PvCML9-RNAi lines compared with WT under salt stress, but higher level in overexpression lines. Moreover, higher levels of SOD and CAT activities and proline accumulation were observed in PvCML9-RNAi lines compared with WT under salt stress, but lower levels in overexpression lines, which altered ROS homeostasis. Based on the above data, mutation of its homolog gene OsCML9 in rice by CRISPR/Cas9 was performed. The mutant had enhanced salt tolerance without affecting rice growth and development, suggesting that OsCML9 gene is an ideal target gene to generate salt tolerant cultivars by genome editing in the future.


Asunto(s)
Calmodulina , Regulación de la Expresión Génica de las Plantas , Oryza , Paspalum , Proteínas de Plantas , Tolerancia a la Sal , Calmodulina/metabolismo , Calmodulina/genética , Homeostasis , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Potasio/metabolismo , Tolerancia a la Sal/genética , Sodio/metabolismo , Paspalum/genética
4.
Anal Chem ; 95(31): 11769-11776, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37489945

RESUMEN

Biomolecular markers, particularly circulating microRNAs (miRNAs) play an important role in diagnosis, monitoring, and therapeutic intervention of cancers. However, existing detection strategies remain intricate, laborious, and far from being developed for point-of-care testing. Here, we report a portable colorimetric sensor that utilizes the hetero-assembly of nanostructures driven by base pairing and recognition for direct detection of miRNAs. Following hybridization, two sizes of nanoparticles modified with single-strand DNA can be robustly assembled into heterostructures with strong optical resonance, exhibiting distinct structure colors. Particularly, the large nanoparticles are first arranged into nanochains to enhance scattering signals of small nanoparticles, which allows for sensitive detection and quantification of miRNAs without the requirement of target extraction, amplification, and fluorescent labels. Furthermore, we demonstrate the high specificity and single-base selectivity of testing different miRNA samples, which shows great potential in the diagnosis, staging, and monitoring of cancers. These heterogeneous assembled nanostructures provide an opportunity to develop simple, fast, and convenient tools for miRNAs detection, which is suitable for many scenarios, especially in low-resource setting.


Asunto(s)
Técnicas Biosensibles , MicroARN Circulante , MicroARNs , Nanoestructuras , MicroARNs/genética , Hibridación de Ácido Nucleico , Colorantes , Límite de Detección
5.
Small ; 19(28): e2301162, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36988021

RESUMEN

Rapid and ultra-sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for early screening and management of COVID-19. Currently, the real-time reverse transcription polymerase chain reaction (rRT-PCR) is the primary laboratory method for diagnosing SARS-CoV-2. It is not suitable for at-home COVID-19 diagnostic test due to the long operating time, specific equipment, and professional procedures. Here an all-printed photonic crystal (PC) microarray with portable device for at-home COVID-19 rapid antigen test is reported. The fluorescence-enhanced effect of PC amplifies the fluorescence intensity of the labeled probe, achieving detection of nucleocapsid (N-) protein down to 0.03 pg mL-1 . A portable fluorescence intensity measurement instrument gives the result (negative or positive) by the color of the indicator within 5 s after inserting the reacted PC microarray test card. The N protein in inactivated virus samples (with cycle threshold values of 26.6-40.0) can be detected. The PC microarray provides a general and easy-to-use method for the timely monitoring and eventual control of the global coronavirus pandemic.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Proteínas de la Nucleocápside/análisis , Proteínas de la Nucleocápside/genética , Técnicas de Amplificación de Ácido Nucleico , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad
6.
Opt Lett ; 48(2): 440-443, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638478

RESUMEN

The highly sensitive detection and identification of chiral biochemical substances have attracted extensive attention. Terahertz (THz) spectroscopy and sensing technology have obvious advantages in non-contact and label-free biochemical detection, but the THz chiral spectral response of chiral biochemical substances is too weak to realize highly sensitive chiral enantiomer recognition. Herein, we propose a method of spin beam deflection and separation by using a Pancharatnam-Berry (PB) metasurface to enhance the THz chirality response of chiral amino acids, realizing the identification of chiral enantiomers of the same kind of amino acid. The conjugate spin transmittances and circular dichroism (CD) spectra of d- and l-tyrosine samples on the PB metasurface were measured by an angle-resolved THz time-domain polarization spectroscopy system, and their CD values reached 16.4° and -11.6° at a deflection angle of ±33°, respectively, which were enhanced by about 9.3 and 11.9 times compared with the maximum CD values of the sample without the metasurface. Therefore, this THz chiral sensing method based on a PB metasurface has great potential in highly sensitive chirality identification and enhancement for chiral substances.


Asunto(s)
Aminoácidos , Espectroscopía de Terahertz , Dicroismo Circular
7.
Adv Sci (Weinh) ; 10(4): e2204916, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36373726

RESUMEN

In this work, the gyrotropic semiconductor InSb into the twisted bilayer metasurface to form a magneto-optical moiré metasurface is introduced. Through the theoretical analysis, the "moiré angle" is developed in which case the nonreciprocity and chirality with the spin-conjugate asymmetric transmission are obtained due to the simultaneous breaking of both time-reversal symmetry and spatial mirror symmetry. The experiments confirm that the chirality can be actively manipulated by rotating the twisted angle and the external magnetic field, realizing spin-conjugate asymmetric transmission. Meanwhile, the two spin states also realize the nonreciprocal one-way transmission, and their isolation spectra are also spin-conjugate asymmetric: one is enhanced up to 48 dB, and the other's bandwidth is widened to over 730 GHz. This spin-conjugate symmetry-breaking effect in the MOMM brings a combination of time-space asymmetric transmission, and it also provides a new scheme for the implementation of high-performance THz chirality controllers and isolators.

8.
Opt Lett ; 47(4): 818-821, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167533

RESUMEN

Multifunctional, high-efficiency, and active manipulation devices are significant for terahertz (THz) technology and application. In this Letter, a stacked-graphene meta-atom (SGM) structure is investigated, which is composed of periodically patterned graphene in the 2D plane and stacked graphene-dielectric layers perpendicularly to the plane. This structure not only has strong THz artificial anisotropy but also enhances the cyclotron resonance response of graphene to a THz wave under an external magnetic field (EMF). Based on these two characteristics, the SGM can realize dynamic conversion between two functions for the manipulation of THz spin chiral states under different EMFs: from the reciprocal spin-flip without EMF to nonreciprocal spin-selection with EMF. Furthermore, a Pancharatnam-Berry (P-B) metasurface composed of the SGMs with different discrete orientation angles has been designed, which achieves active conversion between THz spin chiral beam deflection and the nonreciprocal one-way transmission for two conjugated spin beams, dynamically manipulated by both the biased voltage and EMF. The spin-select isolation is 42.3 dB with a transmission efficiency of over 70% at 1.38 THz. This manipulation mechanism of the spin beam and related devices has great potential in future THz communication, dynamical imaging, and radar scanning systems.

9.
Opt Express ; 29(2): 2037-2048, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726405

RESUMEN

Nowadays, the manipulation of the chiral light field is highly desired to characterize chiral substances more effectively, since the chiral responses of most molecules are generally weak. Terahertz (THz) waves are related to the vibration-rotational energy levels of chiral molecules, so it is significant to actively control and enhance the chirality of THz field. Here, we propose a metal/magneto-optical (MO) hybrid Pancharatnam-Berry (PB) phase structure, which can serve as tunable broadband half-wave plate and control the conversion of THz chiral states with the highest efficiency of over 80%. Based on this active PB element, MO PB metasurfaces are proposed to manipulate THz chiral states as different behaviors: beam deflector and scanning, Bessel beam, and vortex beam. Due to the magnetic-tunablibity, these proposed MO PB metasurfaces can be turned from an "OFF" to "ON" state by changing the external magnetic field. We further investigate the near-field optical chirality and the chirality enhancement factors in far field of the chiral Bessel beam and vortex beam, achieving the superchiral field with the highest chiral enhancement factor of 40 for 0th Bessel beam. These active, high efficiency and broadband chiral PB metasurfaces have promising applications for manipulation the THz chiral light and chiroptical spectroscopic techniques.

10.
Sci Rep ; 9(1): 20210, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882902

RESUMEN

In this work, an active nonreciprocal THz beam steering has been proposed based on a transversely magnetized metal/InSb metagrating. The nonreciprocal dispersion relation and phase shift characteristics of the metal/InSb waveguide are investigated in details. A metagrating structure with gradient phase shift has been designed based on the metal/InSb waveguide. Under the external magnetic field (EMF), the THz beam can be changed among 0, +1st, and -1st order of the metagrating. Due to the nonreciprocity of the metal/InSb metagrating, the deflection angle can be controlled by changing the positive and negative directions of the EMF, to realize bilateral symmetric scanning from -67.8° to 67.8° with over 70% diffraction efficiency, and this device also exhibits the nonreciprocal one-way transmission as an isolator with the isolation of 13 dB. This low-loss, large deflection degree, nonreciprocal beam scanner has a great potential application in the THz regime.

11.
ACS Nano ; 10(3): 3198-205, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26905460

RESUMEN

Low-temperature scanning tunneling microscope investigations reveal that hexabromobenzene (HBB) molecules arrange in either hexagonally closely packed (hcp) [Formula: see text] or tetragonal [Formula: see text] structure on Au(111) dependent on a small substrate temperature difference around 300 K. The underlying mechanism is investigated by density functional theory calculations, which reveal that substrate-mediated intermolecular noncovalent C-Br···Br-C attractions induce hcp HBB islands, keeping the well-known Au(111)-22×√3 reconstruction intact. Upon deposition at 330 K, HBB molecules trap freely diffusing Au adatoms to form tetragonal islands. This enhances the attraction between HBB and Au(111) but partially reduces the intermolecular C-Br···Br-C attractions, altering the Au(111)-22×√3 reconstruction. In both cases, the HBB molecule adsorbs on a bridge site, forming a ∼15° angle between the C-Br direction and [112̅]Au, indicating the site-specific molecule-substrate interactions. We show that the competition between intermolecular and molecule-substrate interactions determines molecule packing at the subnanometer scale, which will be helpful for crystal engineering, functional materials, and organic electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...