Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(21): 15167-15177, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38741618

RESUMEN

Significant advancements have been made in catalytic asymmetric α-C-H bond functionalization of ethers via carbenoid insertion over the past decade. Effective asymmetric catalytic systems, featuring a range of chiral metal catalysts, have been established for the enantioselective synthesis of diverse ether substrates. This has led to the generation of various enantioenriched, highly functionalized oxygen-containing structural motifs, facilitating their application in the asymmetric synthesis of bioactive natural products.

2.
Adv Sci (Weinh) ; 10(35): e2300123, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37875396

RESUMEN

Systemic Lupus Erythematosus (SLE) etiopathogenesis highlights the contributions of overproduction of CD4+ T cells and loss of immune tolerance. However, the involvement of CD8+ T cells in SLE pathology and disease progression remains unclear. Here, the comprehensive immune cell dysregulation in total 263 clinical peripheral blood samples composed of active SLE (aSLE), remission SLE (rSLE) and healthy controls (HCs) is investigated via mass cytometry, flow cytometry and single-cell RNA sequencing. This is observed that CD8+ CD27+ CXCR3- T cells are increased in rSLE compare to aSLE. Meanwhile, the effector function of CD8+ CD27+ CXCR3- T cells are overactive in aSLE compare to HCs and rSLE, and are positively associated with clinical SLE activity. In addition, the response of peripheral blood mononuclear cells (PBMCs) is monitored to interleukin-2 stimulation in aSLE and rSLE to construct dynamic network biomarker (DNB) model. It is demonstrated that DNB score-related parameters can faithfully predict the remission of aSLE and the flares of rSLE. The abundance and functional dysregulation of CD8+ CD27+ CXCR3- T cells can be potential biomarkers for SLE prognosis and concomitant diagnosis. The DNB score with accurate prediction to SLE disease progression can provide clinical treatment suggestions especially for drug dosage determination.


Asunto(s)
Linfocitos T CD4-Positivos , Lupus Eritematoso Sistémico , Humanos , Linfocitos T CD8-positivos , Leucocitos Mononucleares , Lupus Eritematoso Sistémico/diagnóstico , Biomarcadores , Progresión de la Enfermedad , Receptores CXCR3
3.
Cell Rep Med ; 3(11): 100804, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36334594

RESUMEN

Natural resistance to infection is an overlooked outcome after hepatitis C virus (HCV) exposure. Between 1977 and 1979, 1,200 Rhesus D-negative Irish women were exposed to HCV-contaminated anti-D immunoglobulin. Here, we investigate why some individuals appear to resist infection despite exposure (exposed seronegative [ESN]). We screen HCV-resistant and -susceptible donors for anti-HCV adaptive immune responses using ELISpots and VirScan to profile antibodies against all know human viruses. We perform standardized ex vivo whole blood stimulation (TruCulture) assays with antiviral ligands and assess antiviral responses using NanoString transcriptomics and Luminex proteomics. We describe an enhanced TLR3-type I interferon response in ESNs compared with seropositive women. We also identify increased inflammatory cytokine production in response to polyIC in ESNs compared with seropositive women. These enhanced responses may have contributed to innate immune protection against HCV infection in our cohort.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Femenino , Receptor Toll-Like 3/genética , Hepatitis C/tratamiento farmacológico , Antivirales
4.
Allergy ; 77(8): 2415-2430, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35364615

RESUMEN

BACKGROUND: Several autoimmune features occur during coronavirus disease 2019 (COVID-19), with possible implications for disease course, immunity, and autoimmune pathology. In this study, we longitudinally screened for clinically relevant systemic autoantibodies to assess their prevalence, temporal trajectory, and association with immunity, comorbidities, and severity of COVID-19. METHODS: We performed highly sensitive indirect immunofluorescence assays to detect antinuclear antibodies (ANA) and antineutrophil cytoplasmic antibodies (ANCA), along with serum proteomics and virome-wide serological profiling in a multicentric cohort of 175 COVID-19 patients followed up to 1 year after infection, eleven vaccinated individuals, and 41 unexposed controls. RESULTS: Compared with healthy controls, similar prevalence and patterns of ANA were present in patients during acute COVID-19 and recovery. However, the paired analysis revealed a subgroup of patients with transient presence of certain ANA patterns during acute COVID-19. Furthermore, patients with severe COVID-19 exhibited a high prevalence of ANCA during acute disease. These autoantibodies were quantitatively associated with higher SARS-CoV-2-specific antibody titers in COVID-19 patients and in vaccinated individuals, thus linking autoantibody production to increased antigen-specific humoral responses. Notably, the qualitative breadth of antibodies cross-reactive with other coronaviruses was comparable in ANA-positive and ANA-negative individuals during acute COVID-19. In autoantibody-positive patients, multiparametric characterization demonstrated an inflammatory signature during acute COVID-19 and alterations of the B-cell compartment after recovery. CONCLUSION: Highly sensitive indirect immunofluorescence assays revealed transient autoantibody production during acute SARS-CoV-2 infection, while the presence of autoantibodies in COVID-19 patients correlated with increased antiviral humoral immune responses and inflammatory immune signatures.


Asunto(s)
Autoanticuerpos , COVID-19 , Anticuerpos Anticitoplasma de Neutrófilos , Anticuerpos Antinucleares , Antivirales , Humanos , Inmunidad Humoral , SARS-CoV-2
5.
Phenomics ; 2(5): 323-335, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36939755

RESUMEN

Although many methods have been developed to explore the function of cells by clustering high-dimensional (HD) single-cell omics data, the inconspicuously differential expressions of biomarkers of proteins or genes across all cells disturb the cell cluster delineation and downstream analysis. Here, we introduce a hashing-based framework to improve the delineation of cell clusters, which is based on the hypothesis that one variable with no significant differences can be decomposed into more diversely latent variables to distinguish cells. By projecting the original data into a sparse HD space, fly and densefly hashing preprocessing retain the local structure of data, and improve the cluster delineation of existing clustering methods, such as PhenoGraph. Moreover, the analyses on mass cytometry dataset show that our hashing-based framework manages to unveil new hidden heterogeneities in cell clusters. The proposed framework promotes the utilization of cell biomarkers and enriches the biological findings by introducing more latent variables. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-022-00056-z.

6.
Biomaterials ; 276: 121070, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34418817

RESUMEN

Sentinel lymph node (SLN) imaging and biopsy has been advocated as an important technique to evaluate the metastatic status of regional lymph nodes and determine subsequent surgical procedure for many cancers, yet there is no reliable means to provide accurate and rapid diagnosis of metastatic SLN during surgery. Here we develop a new approach, named "Ratiometric Raman dual-nanotag strategy", that using folic acid functionalized targeted and nontargeted gap-enhanced Raman tags (FA-GERTs and Nt-GERTs) to detect metastatic SLN based on Raman imaging combined with classical least square data processing methods. By using this strategy, with built-in self-calibration for signal correction, rather than absolute intensity-dependent signal readout, we realize the visualization and prompt intraoperative diagnosis of metastatic SLN with a high accuracy of 87.5 % when the cut-off value of ratio (FA-GERTs/Nt-GERTs) set at 1.255. This approach may outperform the existing histopathological assessment in diagnosing SLN metastasis and is promising for guiding surgical procedure in the future.


Asunto(s)
Ganglio Linfático Centinela , Diagnóstico por Imagen , Humanos , Ganglios Linfáticos , Metástasis Linfática , Biopsia del Ganglio Linfático Centinela
7.
Cell ; 184(15): 3884-3898.e11, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34143954

RESUMEN

Immune-microbe interactions early in life influence the risk of allergies, asthma, and other inflammatory diseases. Breastfeeding guides healthier immune-microbe relationships by providing nutrients to specialized microbes that in turn benefit the host's immune system. Such bacteria have co-evolved with humans but are now increasingly rare in modern societies. Here we show that a lack of bifidobacteria, and in particular depletion of genes required for human milk oligosaccharide (HMO) utilization from the metagenome, is associated with systemic inflammation and immune dysregulation early in life. In breastfed infants given Bifidobacterium infantis EVC001, which expresses all HMO-utilization genes, intestinal T helper 2 (Th2) and Th17 cytokines were silenced and interferon ß (IFNß) was induced. Fecal water from EVC001-supplemented infants contains abundant indolelactate and B. infantis-derived indole-3-lactic acid (ILA) upregulated immunoregulatory galectin-1 in Th2 and Th17 cells during polarization, providing a functional link between beneficial microbes and immunoregulation during the first months of life.


Asunto(s)
Bifidobacterium/fisiología , Sistema Inmunológico/crecimiento & desarrollo , Sistema Inmunológico/microbiología , Antibacterianos/farmacología , Biomarcadores/metabolismo , Lactancia Materna , Linfocitos T CD4-Positivos/inmunología , Polaridad Celular , Proliferación Celular , Citocinas/metabolismo , Heces/química , Heces/microbiología , Galectina 1/metabolismo , Microbioma Gastrointestinal , Humanos , Indoles/metabolismo , Recién Nacido , Inflamación/sangre , Inflamación/genética , Mucosa Intestinal/inmunología , Metaboloma , Leche Humana/química , Oligosacáridos/metabolismo , Células Th17/inmunología , Células Th2/inmunología , Agua
8.
Front Vet Sci ; 8: 801990, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35097049

RESUMEN

Fish nocardiosis is a chronic, systemic, granulomatous disease in aquaculture. Nocardia seriolae has been reported to be one of the main pathogenic bacteria of fish nocardiosis. There are few studies on the associated virulence factors and pathogenesis of N. seriolae. Alanine dehydrogenase (ALD), which may be a secreted protein, was discovered by analysis using bioinformatics methods throughout the whole genomic sequence of N. seriolae. Nevertheless, the roles of ALD and its homologs in the pathogenesis of N. seriolae are not demonstrated. In this study, the function of N. seriolae ALD (NsALD) was preliminarily investigated by gene cloning, host cell subcellular localization, secreted protein identification, and cell apoptosis detection. Identification of the extracellular products of N. seriolae via mass spectrometry (MS) analysis revealed that NsALD is a secreted protein. In addition, subcellular localization of NsALD-GFP recombinant protein in fathead minnow (FHM) cells showed that the strong green fluorescence co-localized with the mitochondria. Moreover, apoptosis assays demonstrated that the overexpression of NsALD induces apoptosis in FHM cells. This study may lay the foundation for further exploration of the function of NsALD and facilitate further understanding of the pathogenic mechanism and the associated virulence factors of N. seriolae.

9.
Cell ; 183(4): 968-981.e7, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32966765

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is typically very mild and often asymptomatic in children. A complication is the rare multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19, presenting 4-6 weeks after infection as high fever, organ dysfunction, and strongly elevated markers of inflammation. The pathogenesis is unclear but has overlapping features with Kawasaki disease suggestive of vasculitis and a likely autoimmune etiology. We apply systems-level analyses of blood immune cells, cytokines, and autoantibodies in healthy children, children with Kawasaki disease enrolled prior to COVID-19, children infected with SARS-CoV-2, and children presenting with MIS-C. We find that the inflammatory response in MIS-C differs from the cytokine storm of severe acute COVID-19, shares several features with Kawasaki disease, but also differs from this condition with respect to T cell subsets, interleukin (IL)-17A, and biomarkers associated with arterial damage. Finally, autoantibody profiling suggests multiple autoantibodies that could be involved in the pathogenesis of MIS-C.


Asunto(s)
Infecciones por Coronavirus/patología , Neumonía Viral/patología , Síndrome de Respuesta Inflamatoria Sistémica/patología , Autoanticuerpos/sangre , Betacoronavirus/aislamiento & purificación , COVID-19 , Niño , Preescolar , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/virología , Citocinas/metabolismo , Femenino , Humanos , Inmunidad Humoral , Lactante , Masculino , Síndrome Mucocutáneo Linfonodular/complicaciones , Síndrome Mucocutáneo Linfonodular/inmunología , Síndrome Mucocutáneo Linfonodular/patología , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/virología , Análisis de Componente Principal , Proteoma/análisis , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Síndrome de Respuesta Inflamatoria Sistémica/etiología , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
10.
Cell Rep Med ; 1(5): 100078, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32838342

RESUMEN

Severe disease of SARS-CoV-2 is characterized by vigorous inflammatory responses in the lung, often with a sudden onset after 5-7 days of stable disease. Efforts to modulate this hyperinflammation and the associated acute respiratory distress syndrome rely on the unraveling of the immune cell interactions and cytokines that drive such responses. Given that every patient is captured at different stages of infection, longitudinal monitoring of the immune response is critical and systems-level analyses are required to capture cellular interactions. Here, we report on a systems-level blood immunomonitoring study of 37 adult patients diagnosed with COVID-19 and followed with up to 14 blood samples from acute to recovery phases of the disease. We describe an IFNγ-eosinophil axis activated before lung hyperinflammation and changes in cell-cell co-regulation during different stages of the disease. We also map an immune trajectory during recovery that is shared among patients with severe COVID-19.


Asunto(s)
COVID-19/inmunología , Inmunidad Adaptativa , Adulto , Basófilos/metabolismo , COVID-19/sangre , Comunicación Celular , Convalecencia , Eosinófilos/metabolismo , Femenino , Humanos , Inflamación , Interferón gamma/sangre , Interleucina-6/sangre , Estudios Longitudinales , Masculino , SARS-CoV-2 , Índice de Severidad de la Enfermedad
11.
Front Immunol ; 10: 1571, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354723

RESUMEN

Colon cancer (CC) is one of the leading causes of cancer related mortality. Research over past decades have profoundly enhanced our understanding of immunotherapy, a major clinical accomplishment, and its potential role toward treating CC. However, studies investigating the expression of these immune checkpoints, such as epithelial cell adhesion molecule (EpCAM), programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1), by peripheral blood mononuclear cells (PBMCs) is lacking. Here, high-dimensional mass cytometry (CyTOF) is used to investigate immune alterations and promising immunotherapeutic targets expression by PBMCs of CC patients. Results reveal that expression of EpCAM and PD-L1 on CD4+ T cells significantly increased in patients with CC, compared with age- and sex- matching healthy controls and patients with colonic polyps. These differences are also validated in an independent patient cohort using flow cytometry. Further analysis revealed that EpCAM+ CD4+ T cells are PD-L1+ CCR5+ CCR6+. Immunofluorescence staining results demonstrate that the increase of EpCAM+ CD4+ T cells is also observed in tumor tissues, rather than para-cancerous tissues. To ascertain the functional disorders of the identified cell subset, phosphorylated signaling protein levels are assessed using imaging mass cytometry. Increases in pp38 MAPK and pMAPKAPK2 are observable, indicating abnormal activation of pp38 MAPK-pMAPKAPK2 signaling pathway. Results in this study indicate that EpCAM+ CD4+ T cells may play a role in CC development. Detailed knowledge on the functionality of EpCAM+ CD4+ T cells is of high translational relevance.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Neoplasias del Colon/inmunología , Molécula de Adhesión Celular Epitelial/inmunología , Anciano , Femenino , Humanos , Leucocitos Mononucleares/inmunología , Masculino , Receptor de Muerte Celular Programada 1/inmunología , Transducción de Señal/inmunología
12.
SLAS Technol ; 24(4): 408-419, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30856358

RESUMEN

Mass cytometry (CyTOF) is a critical cell profiling tool in acquiring multiparameter proteome data at the single-cell level. A major challenge in CyTOF analysis is sample-to-sample variance arising from the pipetting process, staining variation, and instrument sensitivity. To reduce such variations, cell barcoding strategies that enable the combination of individual samples prior to antibody staining and data acquisition on CyTOF are often utilized. The most prevalent barcoding strategy is based on a binary scheme that cross-examines the existence or nonexistence of certain mass signals; however, it is limited by low barcoding efficiency and high cost, especially for large sample size. Herein, we present a novel barcoding method for CyTOF application based on mass ratiometry. Different mass tags with specific fixed ratios are used to label CD45 antibody to achieve sample barcoding. The presented method exponentially increases the number of possible barcoded samples with the same amount of mass tags compared with conventional methods. It also reduces the overall time for the labeling process to 40 min and avoids the need for expensive commercial barcoding buffer reagents. Moreover, unlike the conventional barcoding process, this strategy does not pre-permeabilize cells before the barcoding procedure, which offers additional benefits in preserving surface biomarker signals.


Asunto(s)
Calibración , Citometría de Flujo/métodos , Antígenos Comunes de Leucocito/análisis , Proteómica/métodos , Análisis de la Célula Individual/métodos , Coloración y Etiquetado/métodos , Citometría de Flujo/normas , Proteómica/normas , Sensibilidad y Especificidad , Análisis de la Célula Individual/normas , Coloración y Etiquetado/normas
13.
Biomaterials ; 163: 105-115, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29455067

RESUMEN

The sentinel lymph node (SLN) biopsy is gaining in popularity as a procedure to investigate the lymphatic metastasis of malignant tumors. The commonly used techniques to identify the SLNs in clinical practice are blue dyes-guided visualization, radioisotope-based detection and near-infrared fluorescence imaging. However, all these methods have not been found to perfectly fit the clinical criteria with issues such as short retention time in SLN, poor spatial resolution, autofluorescence, low photostability and high cost. In this study, we have reported a new type of nanoprobes, named, gap-enhanced Raman tags (GERTs) for the SLN Raman imaging. With the advantageous features including unique "fingerprint" Raman signal, strong Raman enhancement, high photostability, good biocompatibility and extra-long retention time, we have demonstrated that GERTs are greatly favorable for high-contrast and deep SLN Raman imaging, which meanwhile reveals the dynamic migration behavior of the probes entering the SLN. In addition, a quantitative volumetric Raman imaging (qVRI) data-processing method is employed to acquire a high-resolution 3-dimensional (3D) margin of SLN as well as the content variation of GERTs in the SLN. Moreover, SLN detection could be realized via a cost-effective commercial portable Raman scanner. Therefore, GERTs hold the great potential to be translated in clinical application for accurate and intraoperative location of the SLN.


Asunto(s)
Materiales Biocompatibles/química , Medios de Contraste/química , Oro/química , Nanopartículas del Metal/química , Ganglio Linfático Centinela/diagnóstico por imagen , Dióxido de Silicio/química , Espectrometría Raman/métodos , Animales , Transporte Biológico , Línea Celular , Supervivencia Celular , Femenino , Humanos , Ratones Endogámicos BALB C , Tamaño de la Partícula , Fenómenos Físicos , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...