Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
Commun Biol ; 7(1): 681, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831027

RESUMEN

Metabolic dysfunction-associated steatohepatitis (MASH), previously called non-alcoholic steatohepatitis (NASH), is a growing concern worldwide, with liver fibrosis being a critical determinant of its prognosis. Monocyte-derived macrophages have been implicated in MASH-associated liver fibrosis, yet their precise roles and the underlying differentiation mechanisms remain elusive. In this study, we unveil a key orchestrator of this process: long chain saturated fatty acid-Egr2 pathway. Our findings identify the transcription factor Egr2 as the driving force behind monocyte differentiation into hepatic lipid-associated macrophages (hLAMs) within MASH liver. Notably, Egr2-deficiency reroutes monocyte differentiation towards a macrophage subset resembling resident Kupffer cells, hampering hLAM formation. This shift has a profound impact, suppressing the transition from benign steatosis to liver fibrosis, demonstrating the critical pro-fibrotic role played by hLAMs in MASH pathogenesis. Long-chain saturated fatty acids that accumulate in MASH liver emerge as potent inducers of Egr2 expression in macrophages, a process counteracted by unsaturated fatty acids. Furthermore, oral oleic acid administration effectively reduces hLAMs in MASH mice. In conclusion, our work not only elucidates the intricate interplay between saturated fatty acids, Egr2, and monocyte-derived macrophages but also highlights the therapeutic promise of targeting the saturated fatty acid-Egr2 axis in monocytes for MASH management.


Asunto(s)
Diferenciación Celular , Proteína 2 de la Respuesta de Crecimiento Precoz , Cirrosis Hepática , Macrófagos , Monocitos , Enfermedad del Hígado Graso no Alcohólico , Animales , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Ratones , Monocitos/metabolismo , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/genética , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Hígado/metabolismo , Hígado/patología , Antígenos Ly
2.
Biomaterials ; 310: 122621, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815455

RESUMEN

In vitro models of the human liver are promising alternatives to animal tests for drug development. Currently, primary human hepatocytes (PHHs) are preferred for pharmacokinetic and cytotoxicity tests. However, they are unable to recapitulate the flow of bile in hepatobiliary clearance owing to the lack of bile ducts, leading to the limitation of bile analysis. To address the issue, a liver organoid culture system that has a functional bile duct network is desired. In this study, we aimed to generate human iPSC-derived hepatobiliary organoids (hHBOs) consisting of hepatocytes and bile ducts. The two-step differentiation process under 2D and semi-3D culture conditions promoted the maturation of hHBOs on culture plates, in which hepatocyte clusters were covered with monolayered biliary tubes. We demonstrated that the hHBOs reproduced the flow of bile containing a fluorescent bile acid analog or medicinal drugs from hepatocytes into bile ducts via bile canaliculi. Furthermore, the hHBOs exhibited pathophysiological responses to troglitazone, such as cholestasis and cytotoxicity. Because the hHBOs can recapitulate the function of bile ducts in hepatobiliary clearance, they are suitable as a liver disease model and would be a novel in vitro platform system for pharmaceutical research use.


Asunto(s)
Conductos Biliares , Hepatocitos , Células Madre Pluripotentes Inducidas , Organoides , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Organoides/efectos de los fármacos , Organoides/citología , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/citología , Diferenciación Celular/efectos de los fármacos , Investigación Farmacéutica/métodos
3.
Zoolog Sci ; 41(3): 263-274, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38809865

RESUMEN

cytochrome P-450, 21-hydroxylase (cyp21a2), encodes an enzyme required for cortisol biosynthesis, and its mutations are the major genetic cause of congenital adrenal hyperplasia (CAH) in humans. Here, we have generated a null allele for the medaka cyp21a2 with a nine base-pair insertion which led to a truncated protein. We have observed a delay in hatching and a low survival rate in homozygous mutants. The interrenal gland (adrenal counterpart in teleosts) exhibits hyperplasia and the number of pomca-expressing cells in the pituitary increases in the homozygous mutant. A mass spectrometry-based analysis of whole larvae confirmed a lack of cortisol biosynthesis, while its corresponding precursors were significantly increased, indicating a systemic glucocorticoid deficiency in our mutant model. Furthermore, these phenotypes at the larval stage are rescued by cortisol. In addition, females showed complete sterility with accumulated follicles in the ovary while male homozygous mutants were fully fertile in the adult mutants. These results demonstrate that the mutant medaka recapitulates several aspects of cyp21a2-deficiency observed in humans, making it a valuable model for studying steroidogenesis in CAH.


Asunto(s)
Oryzias , Esteroide 21-Hidroxilasa , Animales , Oryzias/genética , Esteroide 21-Hidroxilasa/genética , Esteroide 21-Hidroxilasa/metabolismo , Femenino , Masculino , Glucocorticoides/metabolismo , Hiperplasia/genética , Hiperplasia/veterinaria , Hidrocortisona/metabolismo , Hiperplasia Suprarrenal Congénita/genética , Hiperplasia Suprarrenal Congénita/veterinaria , Mutación , Enfermedades de los Peces/genética , Larva/genética , Larva/metabolismo
4.
Zoolog Sci ; 41(3): 314-322, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38809870

RESUMEN

Formation of the synaptonemal complex (SC) is a prerequisite for proper recombination and chromosomal segregation during meiotic prophase I. One mechanism that ensures SC formation is chromosomal movement, which is driven by the force derived from cytoskeletal motors. Here, we report the phenotype of medaka mutants lacking the telomere repeat binding bouquet formation protein 1 (TERB1), which, in combination with the SUN/KASH protein, mediates chromosomal movement by connecting telomeres and cytoskeletal motors. Mutations in the terb1 gene exhibit defects in SC formation in medaka. Although SC formation was initiated, as seen by the punctate lateral elements and fragmented transverse filaments, it was not completed in the terb1 mutant meiocytes. The mutant phenotype further revealed that the introduction of double strand breaks was independent of synapsis completion. In association with these phenotypes, meiocytes in both the ovaries and testes exhibited an aberrant arrangement of homologous chromosomes. Interestingly, although oogenesis halted at the zygotene-like stage in terb1 mutant, testes continued to produce sperm-like cells with aberrant DNA content. This indicates that the mechanism of meiotic checkpoint is sexually different in medaka, similar to the mammalian checkpoint in which oogenesis proceeds while spermatogenesis is arrested. Moreover, our results suggest that spermatogenesis is mechanistically dissociable from meiosis.


Asunto(s)
Gametogénesis , Mutación , Oryzias , Complejo Sinaptonémico , Animales , Oryzias/genética , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo , Masculino , Gametogénesis/genética , Femenino , Meiosis , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
5.
Sci Rep ; 14(1): 8536, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609454

RESUMEN

Chronic liver injury induces fibrosis that often proceeds to cirrhosis and hepatocellular carcinoma, indicating that prevention and/or resolution of fibrosis is a promising therapeutic target. Hepatic stellate cells (HSCs) are the major driver of fibrosis by expressing extracellular matrices (ECM). HSCs, in the normal liver, are quiescent and activated by liver injury to become myofibroblasts that proliferate and produce ECM. It has been shown that activated HSCs (aHSCs) become a "quiescent-like" state by removal of liver insults. Therefore, deactivation agents can be a therapeutic drug for advanced liver fibrosis. Using aHSCs prepared from human induced pluripotent stem cells, we found that aHSCs were reverted to a quiescent-like state by a combination of chemical compounds that either inhibit or activate a signaling pathway, Lanifibranor, SB431542, Dorsomorphin, retinoic acid, palmitic acid and Y27632, in vitro. Based on these results, we established a high throughput system to screen agents that induce deactivation and demonstrate that a single chemical compound can induce deactivation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias Hepáticas , Humanos , Células Estrelladas Hepáticas , Cirrosis Hepática
6.
Yakugaku Zasshi ; 144(4): 397-402, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38556314

RESUMEN

Cysts are abnormal fluid-filled sacs found in various human organs, including the liver. Liver cysts can be associated with known causes such as parasite infections and gene mutations, or simply aging. Among these causes, simple liver cysts are often found in elderly people. While they are generally benign, they may occasionally grow but rarely shrink with age, indicating their clear association with aging. However, the mechanism behind the formation of simple liver cysts has not been thoroughly investigated. Recently, we have generated transgenic mice that specifically overexpress fibroblast growth factor (FGF)18 in hepatocytes. These mice exhibit severe liver fibrosis without inflammation and spontaneously develop liver cysts that grow with age. Our findings suggest that simple liver cysts can be induced by fibrosis accompanied by sterile inflammation or injury, whereas fibrosis accompanied by severe inflammation or injury may lead to cirrhosis. We also discuss the detrimental effects of disease- and aging-associated fibrosis in various organs, such as the heart, lungs, and kidneys. Additionally, we provide a brief summary of the two currently approved anti-fibrotic drugs for idiopathic pulmonary fibrosis, nintedanib and pirfenidone, as well as their possibility of future expansion of application toward other fibrotic diseases.


Asunto(s)
Quistes , Pulmón , Humanos , Ratones , Animales , Anciano , Pulmón/metabolismo , Fibrosis , Inflamación , Envejecimiento/genética , Quistes/metabolismo , Quistes/patología
7.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471539

RESUMEN

Gametogenesis is the process through which germ cells differentiate into sexually dimorphic gametes, eggs and sperm. In the teleost fish medaka (Oryzias latipes), a germ cell-intrinsic sex determinant, foxl3, triggers germline feminization by activating two genetic pathways that regulate folliculogenesis and meiosis. Here, we identified a pathway involving a dome-shaped microtubule structure that may be the basis of oocyte polarity. This structure was first established in primordial germ cells in both sexes, but was maintained only during oogenesis and was destabilized in differentiating spermatogonia under the influence of Sertoli cells expressing dmrt1. Although foxl3 was dispensable for this pathway, dazl was involved in the persistence of the microtubule dome at the time of gonocyte development. In addition, disruption of the microtubule dome caused dispersal of bucky ball RNA, suggesting the structure may be prerequisite for the Balbiani body. Collectively, the present findings provide mechanistic insight into the establishment of sex-specific polarity through the formation of a microtubule structure in germ cells, as well as clarifying the genetic pathways implementing oocyte-specific characteristics.


Asunto(s)
Oryzias , Animales , Femenino , Masculino , Oryzias/genética , Semen , Células Germinativas/metabolismo , Gametogénesis , Oogénesis/fisiología
8.
Nat Commun ; 15(1): 981, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302485

RESUMEN

Despite drastic cellular changes during cleavage, a mitotic spindle assembles in each blastomere to accurately segregate duplicated chromosomes. Mechanisms of mitotic spindle assembly have been extensively studied using small somatic cells. However, mechanisms of spindle assembly in large vertebrate embryos remain little understood. Here, we establish functional assay systems in medaka (Oryzias latipes) embryos by combining CRISPR knock-in with auxin-inducible degron technology. Live imaging reveals several unexpected features of microtubule organization and centrosome positioning that achieve rapid, accurate cleavage. Importantly, Ran-GTP assembles a dense microtubule network at the metaphase spindle center that is essential for chromosome segregation in early embryos. This unique spindle structure is remodeled into a typical short, somatic-like spindle after blastula stages, when Ran-GTP becomes dispensable for chromosome segregation. We propose that despite the presence of centrosomes, the chromosome-derived Ran-GTP pathway has essential roles in functional spindle assembly in large, rapidly dividing vertebrate early embryos, similar to acentrosomal spindle assembly in oocytes.


Asunto(s)
Oryzias , Animales , Oryzias/genética , Segregación Cromosómica , Centrosoma/metabolismo , Huso Acromático/metabolismo , Microtúbulos/metabolismo , Vertebrados , Guanosina Trifosfato/metabolismo , Mitosis
9.
Am J Physiol Endocrinol Metab ; 326(3): E326-E340, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38294696

RESUMEN

This study aimed to evaluate the role of skeletal muscle-derived interleukin (IL)-15 in the regulation of skeletal muscle autophagy using IL-15 knockout (KO) and transgenic (TG) mice. Male C57BL/6 wild-type (WT), IL-15 KO, and IL-15 TG mice were used in this study. Changes in muscle mass, forelimb grip strength, succinate dehydrogenase (SDH) activity, gene and protein expression levels of major regulators and indicators of autophagy, comprehensive gene expression, and DNA methylation in the gastrocnemius muscle were analyzed. Enrichment pathway analyses revealed that the pathology of IL-15 gene deficiency was related to the autophagosome pathway. Moreover, although IL-15 KO mice maintained gastrocnemius muscle mass, they exhibited a decrease in autophagy induction. IL-15 TG mice exhibited a decrease in gastrocnemius muscle mass and an increase in forelimb grip strength and SDH activity in skeletal muscle. In the gastrocnemius muscle, the ratio of phosphorylated adenosine monophosphate-activated protein kinase α (AMPKα) to total AMPKα and unc-51-like autophagy activating kinase 1 and Beclin1 protein expression were higher in the IL-15 TG group than in the WT group. IL-15 gene deficiency induces a decrease in autophagy induction. In contrast, IL-15 overexpression could improve muscle quality by activating autophagy induction while decreasing muscle mass. The regulation of IL-15 in autophagy in skeletal muscles may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.NEW & NOTEWORTHY IL-15 gene deficiency can decrease autophagy induction. However, although IL-15 overexpression induced a decrease in muscle mass, it led to an improvement in muscle quality. Based on these results, understanding the role of IL-15 in regulating autophagy pathways within skeletal muscle may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.


Asunto(s)
Interleucina-15 , Músculo Esquelético , Ratones , Masculino , Animales , Interleucina-15/genética , Interleucina-15/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Ratones Transgénicos , Ratones Noqueados , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia
10.
J Am Med Dir Assoc ; 25(1): 98-103, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37353205

RESUMEN

OBJECTIVES: Muscle weakness, assessed by grip strength, has been shown to predict postoperative mortality in older patients with cancer. Because lower extremity muscle strength well reflects physical performance, we examined whether lower knee extension muscle strength predicts postoperative mortality better than grip strength in older patients with gastrointestinal cancer. DESIGN: Prospective, observational study in a single institution. SETTING AND PARTICIPANTS: A total of 813 patients (79.0 ± 4.2 years, 66.5% male) aged 65 years or older with gastrointestinal cancer who underwent preoperative evaluation of grip strength and isometric knee extension muscle strength between April 2012 and April 2019 were included. METHODS: The study participants were prospectively followed up for postoperative mortality. Muscle weakness was defined as the lowest quartile of grip strength or knee extension strength (GS-muscle weakness and KS-muscle weakness, respectively). RESULTS: Among the study participants, 176 patients died during a median follow-up of 716 days. In the Kaplan-Meier analysis, we found that patients with both GS-muscle weakness and KS-muscle weakness had a lower survival rate than those without muscle weakness. As expected, higher clinical stages and abdominal and thoracic surgeries compared with endoscopic surgery were associated with increased all-cause mortality. In addition, we found that KS-muscle weakness, but not GS-muscle weakness, was an independent prognostic factor after adjusting for sex, body mass index, cancer stage, surgical technique, and surgical site in the Cox proportional hazard model. CONCLUSIONS AND IMPLICATIONS: In older patients with gastrointestinal cancer, muscle weakness based on knee extension muscle strength can be a better predictor of postoperative prognosis than muscle weakness based on grip strength.


Asunto(s)
Neoplasias Gastrointestinales , Extremidad Inferior , Humanos , Masculino , Anciano , Femenino , Estudios Prospectivos , Fuerza Muscular/fisiología , Fuerza de la Mano , Debilidad Muscular , Neoplasias Gastrointestinales/cirugía
11.
Zebrafish ; 20(6): 229-235, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010808

RESUMEN

The longevity of sperm in teleost such as zebrafish and medaka is short when isolated even in saline-balanced solution at a physiological temperature. In contrast, some internal fertilizers exhibit the long-term storage of sperm, >10 months, in the female reproductive tract. This evidence implies that sperm in teleost possesses the ability to survive for a long time under suitable conditions; however, these conditions are not well understood. In this study, we show that the sperm of zebrafish can survive and maintain fertility in L-15-based storage medium supplemented with bovine serum albumin, fetal bovine serum, glucose, and lactic acid for 28 days at room temperature. The fertilized embryos developed to normal fertile adults. This storage medium was effective in medaka sperm stored for 7 days at room temperature. These results suggest that sperm from external fertilizer zebrafish and medaka has the ability to survive for at least 4 and 1 week, respectively, in the body fluid-like medium at a physiological temperature. This sperm storage method allows researchers to ship sperm by low-cost methods and to investigate key factors for motility and fertile ability in those sperm.


Asunto(s)
Oryzias , Preservación de Semen , Masculino , Femenino , Animales , Pez Cebra , Oryzias/fisiología , Temperatura , Semen , Espermatozoides/fisiología , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Motilidad Espermática/fisiología
12.
PLoS One ; 18(11): e0289086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38011220

RESUMEN

Long-term high-fat feeding results in intramyocellular lipid accumulation, leading to insulin resistance. Intramyocellular lipid accumulation is related to an energy imbalance between excess fat intake and fatty acid consumption. Alternating current electromagnetic field exposure has been shown to enhance mitochondrial metabolism in the liver and sperm. Therefore, we hypothesized that alternating current electromagnetic field exposure would ameliorate high-fat diet-induced intramyocellular lipid accumulation via activation of fatty acid consumption. C57BL/6J mice were either fed a normal diet (ND), a normal diet and exposed to an alternating current electromagnetic field (ND+EMF), a high-fat diet (HFD), or a high-fat diet and exposed to an alternating current electromagnetic field (HFD+EMF). Electromagnetic field exposure was administered 8 hrs/day for 16 weeks using an alternating current electromagnetic field device (max.180 mT, Hokoen, Utatsu, Japan). Tibialis anterior muscles were collected for measurement of intramyocellular lipids, AMPK phosphorylation, FAT/CD-36, and carnitine palmitoyltransferase (CPT)-1b protein expression levels. Intramyocellular lipid levels were lower in the HFD + EMF than in the HFD group. The levels of AMPK phosphorylation, FAT/CD-36, and CPT-1b protein levels were higher in the HFD + EMF than in the HFD group. These results indicate that alternating current electromagnetic field exposure decreases intramyocellular lipid accumulation via increased fat consumption.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Metabolismo de los Lípidos , Ratones , Masculino , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Campos Electromagnéticos , Ratones Endogámicos C57BL , Semen/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Hígado/metabolismo
13.
Nat Commun ; 14(1): 6304, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813881

RESUMEN

Liver fibrosis results from chronic liver injury triggered by factors such as viral infection, excess alcohol intake, and lipid accumulation. However, the mechanisms underlying liver fibrosis are not fully understood. Here, we demonstrate that the expression of fibroblast growth factor 18 (Fgf18) is elevated in mouse livers following the induction of chronic liver fibrosis models. Deletion of Fgf18 in hepatocytes attenuates liver fibrosis; conversely, overexpression of Fgf18 promotes liver fibrosis. Single-cell RNA sequencing reveals that overexpression of Fgf18 in hepatocytes results in an increase in the number of Lrat+ hepatic stellate cells (HSCs), thereby inducing fibrosis. Mechanistically, FGF18 stimulates the proliferation of HSCs by inducing the expression of Ccnd1. Moreover, the expression of FGF18 is correlated with the expression of profibrotic genes, such as COL1A1 and ACTA2, in human liver biopsy samples. Thus, FGF18 promotes liver fibrosis and could serve as a therapeutic target to treat liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Ratones , Animales , Humanos , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/patología , Hígado/metabolismo , Fibrosis , Proliferación Celular
14.
Mol Ther Oncolytics ; 30: 72-85, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37583387

RESUMEN

A complete resection of tongue cancer is often difficult. We investigate the usefulness of administering G47Δ (teserpaturev), a triple-mutated oncolytic herpes simplex virus type 1, prior to resection. G47Δ exhibits good cytopathic effects and replication capabilities in all head and neck cancer cell lines tested. In an orthotopic SCCVII tongue cancer model of C3H/He mice, an intratumoral inoculation with G47Δ significantly prolongs the survival. Further, mice with orthotopic tongue cancer received neoadjuvant G47Δ (or mock) therapy with or without "hemilateral" resection, the maximum extent avoiding surgical deaths. Neoadjuvant G47Δ and resection led to 10/10 survival (120 days), whereas the survivals for G47Δ alone and resection alone were 6/10 and 5/10, respectively: all control animals died by day 11. Furthermore, 100% survival was achieved with neoadjuvant G47Δ therapy even when the resection area was narrowed to "partial," providing insufficient resection margins, whereas hemilateral resection alone caused death by local recurrence in half of the animals. G47Δ therapy caused increased number of tumor-infiltrating CD8+ and CD4+ cells, increased F4/80+ cells within the residual tongues, and increased expression of immune-related genes in and around the tumor. These results imply that neoadjuvant use of G47Δ is useful for preventing local recurrence after tongue cancer surgery.

15.
Sci Transl Med ; 15(700): eabq7721, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37315111

RESUMEN

Intracranial aneurysms (IAs) are a high-risk factor for life-threatening subarachnoid hemorrhage. Their etiology, however, remains mostly unknown at present. We conducted screening for sporadic somatic mutations in 65 IA tissues (54 saccular and 11 fusiform aneurysms) and paired blood samples by whole-exome and targeted deep sequencing. We identified sporadic mutations in multiple signaling genes and examined their impact on downstream signaling pathways and gene expression in vitro and an arterial dilatation model in mice in vivo. We identified 16 genes that were mutated in at least one IA case and found that these mutations were highly prevalent (92%: 60 of 65 IAs) among all IA cases examined. In particular, mutations in six genes (PDGFRB, AHNAK, OBSCN, RBM10, CACNA1E, and OR5P3), many of which are linked to NF-κB signaling, were found in both fusiform and saccular IAs at a high prevalence (43% of all IA cases examined). We found that mutant PDGFRBs constitutively activated ERK and NF-κB signaling, enhanced cell motility, and induced inflammation-related gene expression in vitro. Spatial transcriptomics also detected similar changes in vessels from patients with IA. Furthermore, virus-mediated overexpression of a mutant PDGFRB induced a fusiform-like dilatation of the basilar artery in mice, which was blocked by systemic administration of the tyrosine kinase inhibitor sunitinib. Collectively, this study reveals a high prevalence of somatic mutations in NF-κB signaling pathway-related genes in both fusiform and saccular IAs and opens a new avenue of research for developing pharmacological interventions.


Asunto(s)
Aneurisma Intracraneal , FN-kappa B , Animales , Ratones , Aneurisma Intracraneal/genética , Mutación/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal/genética , Humanos
16.
J Clin Biochem Nutr ; 72(3): 248-255, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37251965

RESUMEN

Diabetes mellitus is recognized as a risk factor for sarcopenia. Luseogliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, reduces inflammation and oxidative stress by improving hyperglycemia, subsequently improving hepatosteatosis or kidney dysfunction. However, the effects of SGLT2 inhibitor on the regulation of skeletal muscle mass or function in hyperglycemia are still unknown. In this study, we investigated the effects of luseogliflozin-mediated attenuation of hyperglycemia on the prevention of muscle atrophy. Twenty-four male Sprague-Dawley rats were randomly divided into four groups: control, control with SGLT2 inhibitor treatment, hyperglycemia, and hyperglycemia with SGLT2 inhibitor treatment. The hyperglycemic rodent model was established using a single injection of streptozotocin, a compound with preferential toxicity toward pancreatic beta cells. Muscle atrophy in streptozotocin-induced hyperglycemic model rats was inhibited by the suppression of hyperglycemia using luseogliflozin, which consequently suppressed hyperglycemia-mediated increase in the levels of advanced glycation end products (AGEs) and activated the protein degradation pathway in muscle cells. Treatment with luseogliflozin can restore the hyperglycemia-induced loss in the muscle mass to some degree partly through the inhibition of AGEs-induced or homeostatic disruption of mitochondria-induced activation of muscle degradation.

17.
Life (Basel) ; 13(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36836764

RESUMEN

Mild hyperbaric oxygen (HBO) enhances oxygen absorption in blood, relieving fatigue without causing oxidative stress. The benefits of mild HBO have been recognized in the treatment of lifestyle-related diseases and hypertension, but no research has been conducted on its effects on immunity. The aim of the present study is to investigate the effect of mild HBO on natural killer (NK) cells and cytokines in healthy young women. This crossover randomized control trial was conducted with 16 healthy young women. Participants were randomly exposed to normobaric oxygen (NBO; 1.0 atmospheres absolute (ATA), 20.8% oxygen) and mild HBO conditions (1.4 ATA, 35-40% oxygen, injected 18L oxygen per minute) in a hyperbaric oxygen chamber for 70 min. Heart rate, parasympathetic activity, NK cell count, interleukin (IL)-6, IL-12p70 and derivatives of reactive oxygen metabolites (d-ROMs) were measured before and after both exposures. In the NBO condition, parasympathetic activity remained unchanged, whereas after mild HBO exposure, parasympathetic activity was significantly increased. NK cells remained unchanged after NBO exposure, while NK cells were increased after exposure to mild HBO. Exposure to mild HBO did not increase d-ROM values, IL-6 and IL-12p70 protein levels. These findings suggest that exposure to mild HBO can be a useful protocol to increase NK cells by regulating parasympathetic activity via increasing oxygen delivery.

18.
Mol Ther Oncolytics ; 28: 31-43, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36619294

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease known for its dense tumor stroma. Focal adhesion kinase inhibitor (FAKi), a non-receptor type tyrosine kinase inhibitor, reduces the tumor stroma. G47Δ, a third-generation oncolytic herpes simplex virus type 1, destroys tumor cells selectively and induces antitumor immune responses. This study evaluates the efficacy of FAKi and G47Δ in PDAC models in combination with or without immune checkpoint inhibitors. G47Δ was effective in human PDAC cell lines in vitro and in subcutaneous as well as orthotopic tumor models. Transgenic mouse-derived #146 cells were used to generate subcutaneous PDAC tumors with rich stroma in immunocompetent mice. In this #146 tumor model, the efficacy of FAKi was synergistically augmented when combined with G47Δ, which reflected not only a decreased stromal content but also a significant shifting of the tumor microenvironment toward immune stimulation. In transgenic autochthonous PKF mice, a rare model that develops stroma-rich PDAC with a 100% penetrance and resembles human PDAC in various aspects, the prolongation of survival compared with FAKi alone was achieved only when FAKi was combined with G47Δ and immune checkpoint inhibitors. The FAKi combination therapy may be useful to overcome the treatment resistance of stroma-rich PDAC.

19.
Acta Histochem Cytochem ; 56(6): 95-104, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38318105

RESUMEN

Prolonged inactivity in skeletal muscles decreases muscle capillary development because of an imbalance between pro- and antiangiogenic signals, mitochondrial metabolism disorders, and increased oxidative stress. Nucleotides have been shown to exert a dose-dependent effect on disuse-induced muscle atrophy. However, the dose-dependent effect on capillary regression in disused muscles remains unclear. Therefore, this study investigated the dose-dependent effect of nucleotides on capillary regression due to disuse. For this purpose, Wistar rats were divided into five groups as follows: control rats fed nucleotide-free diets (CON), hindlimb-unloaded rats fed nucleotide-free diets (HU), and hindlimb-unloaded rats fed 1.0%, 2.5%, and 5.0% nucleotide diets, (HU + 1.0% NT), (HU + 2.5% NT), and (HU + 5.0% NT), respectively. Unloading increased reactive oxygen species (ROS) production and decreased mitochondrial enzyme activity, thereby decreasing the number of muscle capillaries. In contrast, 5.0% nucleotide-containing diet prevented increases in ROS production and reductions in the expression levels of NAMPT, PGC-1α, and CPT-1b proteins. Moreover, 5.0% nucleotide-containing diet prevented mitochondrial enzyme activity (such as citrate synthase and beta-hydroxy acyl-CoA dehydrogenase activity) via NAMPT or following PGC-1α upregulation, thereby preventing capillary regression. Therefore, 5.0% nucleotide-containing diet is likely to prevent capillary regression by decreasing oxidative stress and increasing mitochondrial metabolism.

20.
Sex Dev ; 16(4): 283-288, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36450233

RESUMEN

INTRODUCTION: Hermaphroditism is a mode of reproduction involving an individual animal that possesses both a testis and an ovary either sequentially or simultaneously. The mechanism creating hermaphrodites remains unknown. Previously, we identified foxl3 as the germline sex determination gene in a gonochoristic fish, medaka (Oryzias latipes). foxl3 loss-of-function (foxl3-/-) females produce functional sperm as well as eggs in the ovary. However, these two gametes are not self-fertilizing because of the histological separation of each gamete production. In this study, we attempted to generate self-fertilizing medaka from female medaka by modifying germline sex using foxl3-/- mutants and by using exogenous androgen to induce partial sex reversal of somatic cells. METHODS: foxl3-/- XX females were treated with 11-ketotestosterone (11-KT), a potent teleost fish androgen, at the sexually mature stage for 30 days (90-120 dph). Then, the fish were kept under normal conditions until they were either being dissected or crossed with infertile males. RESULTS AND DISCUSSION: We showed that the foxl3-/- XX female medaka can be transformed into a self-fertilizing hermaphrodite by inducing the formation of a male-like structure with exogenous 11-KT. Self-fertilization occurs in either the ovarian cavity, the oviduct, or both where sperm is released from a tubule-like structure which is likely derived from germinal epithelium, suggesting that timely modification of 2 independent mechanisms, regulation of germline sex and partial sex reversal of somatic cells, are critical to change the reproduction mode. Our results will provide insights in developmental and evolutional occurrence of hermaphrodite vertebrates, facilitate an innovative technique to improve the efficient selection of fish with desirable traits, and contribute to the rescue of endangered species.


Asunto(s)
Trastornos del Desarrollo Sexual , Oryzias , Animales , Masculino , Femenino , Oryzias/genética , Procesos de Determinación del Sexo/genética , Andrógenos , Semen , Trastornos del Desarrollo Sexual/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...