Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 18(10): 1997-2005, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35195149

RESUMEN

The adsorbed layer on a solid surface plays a crucial role in the dynamics of nanoconfinement polymer materials. However, the influence of the adsorbed layer is complex, and clarifying this influence on the dynamics of confined polymers remains a major challenge. In this paper, SiO2-Si substrates with various thicknesses and adsorbed layers of PS with various molecular weights were used to reveal the effect of the adsorbed layer on the corresponding segmental dynamics of the supported thin PS films. Strongly suppressed segmental dynamics of thin PS films were observed for the films supported on thicker adsorbed layers or prepared using higher molecular weight. Neutron reflectivity revealed that the overlap region thickness between the adsorbed layer and the top overlayer increased with increasing thickness and molecular weight of the adsorbed layer, both of which correlate well with the distance over which the polystyrene dynamics were depressed by the adsorbed layer. The results show that the influencing distance of the adsorbed layer is related to the overlap zone formed between the adsorption layer and the upper thin film. The effect of the adsorbed layer molecular weight can be ascribed to the fact that large loops and long tails in the adsorbed layer result in stronger interpenetrations and entanglements between polymer chains in the adsorbed layer and in the overlayer, causing a stronger substrate effect and suppression of the segment dynamics of the supported thin PS films.

2.
Langmuir ; 37(51): 14941-14949, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34904431

RESUMEN

Surface modification without changing the physical properties in the bulk is of pivotal importance for the development of polymers as devices. We recently proposed a simple surface functionalization method for polymer films by partial swelling using a nonsolvent and demonstrated the incorporation of poly(2-methoxyethyl acrylate) (PMEA), which has an excellent antibiofouling ability, only into the outermost region of a poly(methyl methacrylate) (PMMA) film. We here extend this technology to another versatile polymer, polystyrene (PS). In this case, PS and PMEA have different solubility parameters making it difficult to select a suitable solvent, which is a nonsolvent for PS and a good solvent for PMEA, unlike the combination of PMMA with PMEA. Thus, such a solvent was first sought by examining the swelling behavior of PS films in contact with various alcohols. Once a mixed solvent of methanol/1-butanol (50/50 (v/v)) was chosen, PMEA chains could be successfully incorporated at the outermost region of the PS film. Atomic force microscopy in conjunction with neutron reflectivity revealed that chains of PMEA incorporated in the PS surface region were well swollen in water. This leads to an excellent ability to suppress the adhesion of platelets on the PS film.

3.
ACS Appl Bio Mater ; 3(4): 2170-2176, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35025268

RESUMEN

Surface treatment of polymeric solids without impairing their bulk properties is a crucial functionalization strategy for the promotion of their wider application. We here propose a facile method using a nonsolvent which can subtly alter or swell the polymer surface to be modified. A thin film of poly(methyl methacrylate) (PMMA) was immersed in a methanol solution of poly(2-methoxyethyl acrylate) (PMEA). Electron spectroscopy for chemical analysis and neutron reflectometry revealed that a PMEA layer formed on the PMMA film with a diffused interface. The PMEA layer was very swollen in water and exhibited the ability to suppress serum protein adsorption and platelet adhesion on it. The functionalization technique using a nonsolvent was also applicable to the surface of other polymeric solids such as polyurethane.

4.
Langmuir ; 34(2): 709-714, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28945378

RESUMEN

The polymer dynamics at the water interface play a crucial role in the manifestation of biorelated functions. One of the strategies for this is to form inclusion complexes of polymer chains with cyclic compounds. However, such an idea has been limited to bulk materials so far. Here we propose a preparation pathway for a polyrotaxane structure composed of poly(ethylene oxide) (PEO) and α-cyclodextrin (CD) at the outermost surface of a glassy poly(methyl methacrylate) film on the basis of the combination of a click reaction and the Langmuir-Blodgett method. The chain motion of PEO at the water interface could be regulated by threading of CD molecules on PEO and thereby the biological responses such as protein adsorption and platelet adhesion altered depending on the extent of complexation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...