RESUMEN
Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Astrocitos/patología , Encéfalo/patología , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ratones , Invasividad Neoplásica , Neuronas/fisiologíaRESUMEN
The recent discovery of synaptic connections between neurons and brain tumor cells fundamentally challenges our understanding of gliomas and brain metastases and shows how these tumors can integrate into complex neuronal circuits. Here, we provide an overview of glutamatergic neuron-to-brain tumor synaptic communication (NBTSC) and explore novel therapeutic avenues. First, we summarize current concepts of direct synaptic interactions between presynaptic neurons and postsynaptic glioma cells, and indirect perisynaptic input to metastatic breast cancer cells. We explain how these novel structures drive brain tumor growth and invasion. Second, a vicious cycle of enhanced neuronal activity, including tumor-related epilepsy, and glioma progression is described. Finally, we discuss which future avenues to target NBTSC appear most promising. All in all, further characterization of NBTSC and the exploration of NBTSC-inhibiting therapies have the potential to reveal critical vulnerabilities of yet incurable brain tumors.
Asunto(s)
Neoplasias Encefálicas , Glioma , Células Cultivadas , Humanos , Neuronas , SinapsisRESUMEN
A network of communicating tumour cells that is connected by tumour microtubes mediates the progression of incurable gliomas. Moreover, neuronal activity can foster malignant behaviour of glioma cells by non-synaptic paracrine and autocrine mechanisms. Here we report a direct communication channel between neurons and glioma cells in different disease models and human tumours: functional bona fide chemical synapses between presynaptic neurons and postsynaptic glioma cells. These neurogliomal synapses show a typical synaptic ultrastructure, are located on tumour microtubes, and produce postsynaptic currents that are mediated by glutamate receptors of the AMPA subtype. Neuronal activity including epileptic conditions generates synchronised calcium transients in tumour-microtube-connected glioma networks. Glioma-cell-specific genetic perturbation of AMPA receptors reduces calcium-related invasiveness of tumour-microtube-positive tumour cells and glioma growth. Invasion and growth are also reduced by anaesthesia and the AMPA receptor antagonist perampanel, respectively. These findings reveal a biologically relevant direct synaptic communication between neurons and glioma cells with potential clinical implications.