Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
BMC Genom Data ; 25(1): 51, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844841

RESUMEN

Vaccine-related myocarditis associated with the BNT162b2 vaccine is a rare complication, with a higher risk observed in male adolescents. However, the contribution of genetic factors to this condition remains uncertain. In this study, we conducted a comprehensive genetic association analysis in a cohort of 43 Hong Kong Chinese adolescents who were diagnosed with myocarditis shortly after receiving the BNT162b2 mRNA COVID-19 vaccine. A comparison of whole-genome sequencing data was performed between the confirmed myocarditis cases and a control group of 481 healthy individuals. To narrow down potential genomic regions of interest, we employed a novel clustering approach called ClusterAnalyzer, which prioritised 2,182 genomic regions overlapping with 1,499 genes for further investigation. Our pathway analysis revealed significant enrichment of these genes in functions related to cardiac conduction, ion channel activity, plasma membrane adhesion, and axonogenesis. These findings suggest a potential genetic predisposition in these specific functional areas that may contribute to the observed side effect of the vaccine. Nevertheless, further validation through larger-scale studies is imperative to confirm these findings. Given the increasing prominence of mRNA vaccines as a promising strategy for disease prevention and treatment, understanding the genetic factors associated with vaccine-related myocarditis assumes paramount importance. Our study provides valuable insights that significantly advance our understanding in this regard and serve as a valuable foundation for future research endeavours in this field.


Asunto(s)
Vacuna BNT162 , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Miocarditis , Humanos , Vacuna BNT162/efectos adversos , Miocarditis/genética , Miocarditis/epidemiología , Miocarditis/etiología , Miocarditis/inducido químicamente , Masculino , Adolescente , Hong Kong/epidemiología , Femenino , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , COVID-19/genética , COVID-19/epidemiología , Secuenciación Completa del Genoma , SARS-CoV-2/genética , SARS-CoV-2/inmunología
2.
Res Sq ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38903062

RESUMEN

The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher Database (GMDB) as a reference dataset for medical images of patients with rare genetic disorders from around the world. We collected 10,980 frontal facial images - more than a quarter previously unpublished - from 8,346 patients, representing 581 rare disorders. Although the predominant ancestry is still European (67%), data from underrepresented populations have been increased considerably via global collaborations (19% Asian and 7% African). This includes previously unpublished reports for more than 40% of the African patients. The NGP analysis on this diverse dataset revealed characteristic performance differences depending on the composition of training and test sets corresponding to genetic relatedness. For clinical use of NGP, incorporating non-European patients resulted in a profound enhancement of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. Importantly, this improvement in delineating the correct disorder from a facial portrait was achieved without decreasing the performance on European patients. By design, GMDB complies with the FAIR principles by rendering the curated medical data findable, accessible, interoperable, and reusable. This means GMDB can also serve as data for training and benchmarking. In summary, our study on facial dysmorphism on a global sample revealed a considerable cross ancestral phenotypic variability confounding NGP that should be counteracted by international efforts for increasing data diversity. GMDB will serve as a vital reference database for clinicians and a transparent training set for advancing NGP technology.

3.
Microbiol Spectr ; 12(1): e0240123, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38084978

RESUMEN

IMPORTANCE: Synthetic communities (SynComs) are an invaluable tool to characterize and model plant-microbe interactions. Multimember SynComs approximate intricate real-world interactions between plants and their microbiome, but the complexity and time required for their construction increase enormously for each additional member added to the SynCom. Therefore, researchers who study a diversity of microbiomes using SynComs are looking for ways to simplify the use of SynComs. In this manuscript, we evaluate the feasibility of creating ready-to-use freezer stocks of a well-studied seven-member SynCom for maize roots. The frozen ready-to-use SynCom stocks work according to the principle of "just add buffer and apply to sterilized seeds or seedlings" and thus can save time applied in multiple days of laborious growing and combining of multiple microorganisms. We show that ready-to-use SynCom stocks provide comparable results to those of freshly constructed SynComs and thus allow for significant time savings when working with SynComs.


Asunto(s)
Microbiota , Zea mays , Raíces de Plantas , Bacterias , Plantas , Microbiología del Suelo
4.
BMC Med ; 21(1): 410, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904165

RESUMEN

BACKGROUND: With increasing hypercholesterolemia prevalence in East Asian adolescents, pharmacologic interventions (e.g., HMGCR inhibitors (statins) and PCSK9 inhibitors) may have to be considered although their longer-term safety in the general adolescent population is unclear. This study aims to investigate the longer-term safety of HMGCR inhibitors and PCSK9 inhibitors among East Asian adolescents using genetics. METHODS: A drug-target Mendelian randomization study leveraging the Global Lipid Genetics Consortium (East Asian, n = 146,492) and individual-level data from Chinese participants in the Biobank clinical follow-up of Hong Kong's "Children of 1997" birth cohort (n = 3443, aged ~ 17.6 years). Safety outcomes (n = 100) included anthropometric and hematological traits, renal, liver, lung function, and other nuclear magnetic resonance metabolomics. Positive control outcomes were cholesterol markers from the "Children of 1997" birth cohort and coronary artery disease from Biobank Japan. RESULTS: Genetic inhibition of HMGCR and PCSK9 were associated with reduction in cholesterol-related NMR metabolomics, e.g., apolipoprotein B (HMGCR: beta [95% CI], - 1.06 [- 1.52 to - 0.60]; PCSK9: - 0.93 [- 1.56 to - 0.31]) and had the expected effect on the positive control outcomes. After correcting for multiple comparisons (p-value < 0.006), genetic inhibition of HMGCR was associated with lower linoleic acid - 0.79 [- 1.25 to - 0.35]. Genetic inhibition of PCSK9 was not associated with the safety outcomes assessed. CONCLUSIONS: Statins and PCSK9 inhibitors in East Asian adolescents appeared to be safe based on the outcomes concerned. Larger studies were warranted to verify these findings. This study serves as a proof of principle study to inform the medication safety among adolescents via genetics.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Niño , Humanos , Adolescente , Anciano , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Proproteína Convertasa 9 , Inhibidores de PCSK9 , Análisis de la Aleatorización Mendeliana , Pueblos del Este de Asia , LDL-Colesterol
5.
Front Pediatr ; 11: 1203289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593442

RESUMEN

Genetic mutations are critical factors leading to congenital surgical diseases and can be identified through genomic analysis. Early and accurate identification of genetic mutations underlying these conditions is vital for clinical diagnosis and effective treatment. In recent years, artificial intelligence (AI) has been widely applied for analyzing genomic data in various clinical settings, including congenital surgical diseases. This review paper summarizes current state-of-the-art AI-based approaches used in genomic analysis and highlighted some successful applications that deepen our understanding of the etiology of several congenital surgical diseases. We focus on the AI methods designed for the detection of different variant types and the prioritization of deleterious variants located in different genomic regions, aiming to uncover susceptibility genomic mutations contributed to congenital surgical disorders.

6.
Pediatr Surg Int ; 39(1): 104, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36749416

RESUMEN

Hirschsprung's disease (HSCR) is a classical model of enteric neuropathy, occurring in approximately 2-2.8 in 10,000 newborns. It is the commonest form of congenital bowel obstruction and is characterized by the absence of enteric ganglia in distal colon. Recent advances in genome-wide association analysis (GWAS) and next generation sequencing (NGS) studies have led to the discovery of a number of new HSCR candidate genes, thereby providing new insights into the genetic architecture and molecular mechanisms of the disease. Altogether, these findings indicated that genetic heterogeneity, variable penetrance and expressivity, and genetic interaction are the pervasive characteristics of HSCR genetics. In this review, we will provide an update on the genetic landscape of HSCR and discuss how the common and rare variants may act together to modulate the phenotypic manifestation. Translating the genetic findings to genetic risk prediction and to optimize clinical outcomes are undoubtedly the ultimate goals for genetic studies on HSCR. From this perspective, we will further discuss the major obstacles in the clinical translation of these latest genetic findings. Lastly, new measures to address these clinical challenges are suggested to advance precision medicine and to develop novel alternative therapies.


Asunto(s)
Enfermedad de Hirschsprung , Recién Nacido , Humanos , Enfermedad de Hirschsprung/genética , Estudio de Asociación del Genoma Completo
7.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555252

RESUMEN

Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by MeCP2 mutations. Nonetheless, the pathophysiological roles of MeCP2 mutations in the etiology of intrinsic cardiac abnormality and sudden death remain unclear. In this study, we performed a detailed functional studies (calcium and electrophysiological analysis) and RNA-sequencing-based transcriptome analysis of a pair of isogenic RTT female patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) that expressed either MeCP2wildtype or MeCP2mutant allele and iPSC-CMs from a non-affected female control. The observations were further confirmed by additional experiments, including Wnt signaling inhibitor treatment, siRNA-based gene silencing, and ion channel blockade. Compared with MeCP2wildtype and control iPSC-CMs, MeCP2mutant iPSC-CMs exhibited prolonged action potential and increased frequency of spontaneous early after polarization. RNA sequencing analysis revealed up-regulation of various Wnt family genes in MeCP2mutant iPSC-CMs. Treatment of MeCP2mutant iPSC-CMs with a Wnt inhibitor XAV939 significantly decreased the ß-catenin protein level and CACN1AC expression and ameliorated their abnormal electrophysiological properties. In summary, our data provide novel insight into the contribution of activation of the Wnt/ß-catenin signaling cascade to the cardiac abnormalities associated with MeCP2 mutations in RTT.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de Rett , Humanos , Femenino , Síndrome de Rett/metabolismo , Vía de Señalización Wnt , Miocitos Cardíacos/metabolismo , Línea Celular , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Mutación
8.
Sci Rep ; 12(1): 20423, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443333

RESUMEN

Common variants in RET and NRG1 have been associated with Hirschsprung disease (HSCR), a congenital disorder characterised by incomplete innervation of distal gut, in East Asian (EA) populations. However, the allelic effects so far identified do not fully explain its heritability, suggesting the presence of epistasis, where effect of one genetic variant differs depending on other (modifier) variants. Few instances of epistasis have been documented in complex diseases due to modelling complexity and data challenges. We proposed four epistasis models to comprehensively capture epistasis for HSCR between and within RET and NRG1 loci using whole genome sequencing (WGS) data in EA samples. 65 variants within the Topologically Associating Domain (TAD) of RET demonstrated significant epistasis with the lead enhancer variant (RET+3; rs2435357). These epistatic variants formed two linkage disequilibrium (LD) clusters represented by rs2506026 and rs2506028 that differed in minor allele frequency and the best-supported epistatic model. Intriguingly, rs2506028 is in high LD with one cis-regulatory variant (rs2506030) highlighted previously, suggesting that detected epistasis might be mediated through synergistic effects on transcription regulation of RET. Our findings demonstrated the advantages of WGS data for detecting epistasis, and support the presence of interactive effects of regulatory variants in RET for HSCR.


Asunto(s)
Enfermedad de Hirschsprung , Humanos , Enfermedad de Hirschsprung/genética , Epistasis Genética , Secuenciación Completa del Genoma , Alelos , Pueblo Asiatico , Proteínas Proto-Oncogénicas c-ret/genética
9.
J Mol Diagn ; 24(10): 1089-1099, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35868510

RESUMEN

Thalassemia is one of the most common genetic diseases and a major health threat worldwide. Accurate, efficient, and scalable analysis of next-generation sequencing (NGS) data is much needed for its molecular diagnosis and carrier screening. We developed NGS4THAL, a bioinformatics analysis pipeline analyzing NGS data to detect pathogenic variants for thalassemia and other hemoglobinopathies. NGS4THAL realigns ambiguously mapped NGS reads derived from the homologous Hb gene clusters for accurate detection of point mutations and small insertions/deletions. It uses a combination of complementary structural variant (SV) detection tools and an in-house database of control data containing specific SVs to achieve accurate detection of the complex SV types. Detected variants are matched with those in HbVar (A Database of Human Hemoglobin Variants and Thalassemia Mutations), allowing recognition of known pathogenic variants, including disease modifiers. Tested on simulation data, NGS4THAL achieved high sensitivity and specificity. For targeted NGS sequencing data from samples with laboratory-confirmed pathogenic Hb variants, it achieved 100% detection accuracy. Application of NGS4THAL on whole genome sequencing data from unrelated studies revealed thalassemia mutation carrier rates for Hong Kong Chinese and Northern Vietnamese that were consistent with previous reports. NGS4THAL is a highly accurate and efficient molecular diagnosis tool for thalassemia and other hemoglobinopathies based on tailored analysis of NGS data and may be scaled for population carrier screening.


Asunto(s)
Hemoglobinopatías , Talasemia , Hemoglobinopatías/diagnóstico , Hemoglobinopatías/epidemiología , Hemoglobinopatías/genética , Hemoglobinas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Talasemia/diagnóstico , Talasemia/genética
10.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563229

RESUMEN

Biliary atresia is a severe obliterative cholangiopathy in early infancy that is by far the most common cause of surgical jaundice and the most common indicator for liver transplantation in children. With the advanced knowledge gained from different clinical trials and the development of research models, a more precise clinical classification of BA (i.e., isolated BA (IBA), cystic BA (CBA), syndromic BA (SBA), and cytomegalovirus-associated BA (CMVBA)) is proposed. Different BA subtypes have similar yet distinguishable clinical manifestations. The clinical and etiological heterogeneity leads to dramatically different prognoses; hence, treatment needs to be specific. In this study, we reviewed the clinical characteristics of different BA subtypes and revealed the molecular mechanisms of their developmental contributors. We aimed to highlight the differences among these various subtypes of BA which ultimately contribute to the development of a specific management protocol for each subtype.


Asunto(s)
Atresia Biliar , Trasplante de Hígado , Niño , Humanos , Lactante , Trasplante de Hígado/efectos adversos , Portoenterostomía Hepática/efectos adversos
11.
Acta Neuropathol Commun ; 10(1): 45, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379353

RESUMEN

Amyloid-beta (Aß) and tau protein are both involved in the pathogenesis of Alzheimer's disease. Aß produces synaptic deficits in wild-type mice that are not seen in Mapt-/- mice, suggesting that tau protein is required for these effects of Aß. However, whether some synapses are more selectively affected and what factors may determine synaptic vulnerability to Aß are poorly understood. Here we first observed that burst timing-dependent long-term potentiation (b-LTP) in hippocampal CA3-CA1 synapses, which requires GluN2B subunit-containing NMDA receptors (NMDARs), was inhibited by human Aß1-42 (hAß) in wild-type (WT) mice, but not in tau-knockout (Mapt-/-) mice. We then tested whether NMDAR currents were affected by hAß; we found that hAß reduced the postsynaptic NMDAR current in WT mice but not in Mapt-/- mice, while the NMDAR current was reduced to a similar extent by the GluN2B-selective NMDAR antagonist Ro 25-6981. To further investigate a possible difference in GluN2B-containing NMDARs in Mapt-/- mice, we used optogenetics to compare NMDAR/AMPAR ratio of EPSCs in CA1 synapses with input from left vs right CA3. It was previously reported in WT mice that hippocampal synapses in CA1 that receive input from the left CA3 display a higher NMDAR charge transfer and a higher Ro-sensitivity than synapses in CA1 that receive input from the right CA3. Here we observed the same pattern in Mapt-/- mice, thus differential NMDAR subunit expression does not explain the difference in hAß effect on LTP. Finally, we asked whether synapses with left vs right CA3 input are differentially affected by hAß in WT mice. We found that NMDAR current in synapses with input from the left CA3 were reduced while synapses with input from the right CA3 were unaffected by acute hAß exposure. These results suggest that hippocampal CA3-CA1 synapses with presynaptic axon originating in the left CA3 are selectively vulnerable to Aß and that a genetic knock out of tau protein protects them from Aß synaptotoxicity.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Sinapsis , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Región CA1 Hipocampal , Región CA3 Hipocampal , Hipocampo/metabolismo , Potenciación a Largo Plazo , Ratones , Sinapsis/metabolismo
12.
NPJ Genom Med ; 7(1): 23, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314707

RESUMEN

Traditional carrier screening has been utilized for the detection of carriers of genetic disorders. Since a comprehensive assessment of the carrier frequencies of recessive conditions in the Southern Chinese population is not yet available, we performed a secondary analysis on the spectrum and carrier status for 315 genes causing autosomal recessive disorders in 1543 Southern Chinese individuals with next-generation sequencing data, 1116 with exome sequencing and 427 with genome sequencing data. Our data revealed that 1 in 2 people (47.8% of the population) was a carrier for one or more recessive conditions, and 1 in 12 individuals (8.30% of the population) was a carrier for treatable inherited conditions. In alignment with current American College of Obstetricians and Gynecologists (ACOG) pan-ethnic carrier recommendations, 1 in 26 individuals were identified as carriers of cystic fibrosis, thalassemia, and spinal muscular atrophy in the Southern Chinese population. When the >1% expanded carrier screening rate recommendation by ACOG was used, 11 diseases were found to meet the criteria in the Southern Chinese population. Approximately 1 in 3 individuals (35.5% of the population) were carriers of these 11 conditions. If the 1 in 200 carrier frequency threshold is used, and additional seven genes would meet the criteria, and 2 in 5 individuals (38.7% of the population) would be detected as a carrier. This study provides a comprehensive catalogue of the carrier spectrum and frequency in the Southern Chinese population and can serve as a reference for careful evaluation of the conditions to be included in expanded carrier screening for Southern Chinese people.

13.
Eur Heart J ; 43(18): 1702-1711, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35195259

RESUMEN

AIMS: To construct a polygenic risk score (PRS) for coronary artery disease (CAD) and comprehensively evaluate its potential in clinical utility for primary prevention in Chinese populations. METHODS AND RESULTS: Using meta-analytic approach and large genome-wide association results for CAD and CAD-related traits in East Asians, a PRS comprising 540 genetic variants was developed in a training set of 2800 patients with CAD and 2055 controls, and was further assessed for risk stratification for CAD integrating with the guideline-recommended clinical risk score in large prospective cohorts comprising 41 271 individuals. During a mean follow-up of 13.0 years, 1303 incident CAD cases were identified. Individuals with high PRS (the highest 20%) had about three-fold higher risk of CAD than the lowest 20% (hazard ratio 2.91, 95% confidence interval 2.43-3.49), with the lifetime risk of 15.9 and 5.8%, respectively. The addition of PRS to the clinical risk score yielded a modest yet significant improvement in C-statistic (1%) and net reclassification improvement (3.5%). We observed significant gradients in both 10-year and lifetime risk of CAD according to the PRS within each clinical risk strata. Particularly, when integrating high PRS, intermediate clinical risk individuals with uncertain clinical decision for intervention would reach the risk levels (10-year of 4.6 vs. 4.8%, lifetime of 17.9 vs. 16.6%) of high clinical risk individuals with intermediate (20-80%) PRS. CONCLUSION: The PRS could stratify individuals into different trajectories of CAD risk, and further refine risk stratification for CAD within each clinical risk strata, demonstrating a great potential to identify high-risk individuals for targeted intervention in clinical utility.


Asunto(s)
Enfermedad de la Arteria Coronaria , Pueblo Asiatico , China/epidemiología , Estudios de Cohortes , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética , Estudios Prospectivos , Medición de Riesgo/métodos , Factores de Riesgo
14.
Genes Nutr ; 17(1): 1, 2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35093020

RESUMEN

BACKGROUND: Vitamin D (Vit-D) promotes vascular repair and its deficiency is closely linked to the development of type 2 diabetes mellitus (T2DM) and hypertension. Whether genetially predicted vitamin D status (serological 25-hydroxyvitamin D [25(OH)D]) confers secondary protection against cardiovascular diseases (CVD) among high-risk hypertensive-diabetic subjects was unknown. METHODS: This is a prospective, individual-data, two-sample Mendelian randomization study. We interrogated 12 prior GWAS-detected SNPs of comprehensive Vit-D mechanistic pathways using high-throughput exome chip analyses in a derivation subcohort (n = 1460) and constructed a genetic risk score (GRS) (rs2060793, rs4588, rs7041; F-statistic = 32, P < 0.001) for causal inference of comprehensive CVD hard clinical endpoints in an independent sample of hypertensive subjects (n = 3746) with prevailing co-morbid T2DM (79%) and serological 25(OH)D deficiency [< 20 ng/mL] 45%. RESULTS: After 55.6 ± 28.9 months, 561 (15%) combined CVD events including myocardial infarction, unstable angina, ischemic stroke, congestive heart failure, peripheral vascular disease, and cardiovascular death had occurred. Kaplan-Meier analysis showed that genetically predicted reduced vitamin D status was associated with reduced event-free survival from combined CVD events (log-rank = 13.5, P = 0.001). Multivariate-adjusted per-allele increase in GRS predicted reduced combined CVD events (HR = 0.90 [0.84 to 0.96], P = 0.002). Mendelian randomization indicates that increased Vit-D exposure, leveraged through each 1 ng/mL genetically instrumented rise of serum Vit-D, protects against combined CVD events (Wald's estimate: OR = 0.86 [95%CI 0.75 to 0.95]), and myocardial infarction (OR = 0.76 [95%CI 0.60 to 0.90]). Furthermore, genetically predicted increase in Vit-D status ameliorates risk of deviation from achieving guideline-directed hypertension control (JNC-8: systolic target < 150 mmHg) (OR = 0.89 [95%CI 0.80 to 0.96]). CONCLUSIONS: Genetically predicted increase in Vit-D status [25(OH)D] may confer secondary protection against incident combined CVD events and myocardial infarction in a hypertensive-diabetic population where serological 25(OH)D deficiency is common, through facilitating blood pressure control.

15.
JCI Insight ; 7(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34905512

RESUMEN

Tetralogy of Fallot (TOF) is the most common cyanotic heart defect, yet the underlying genetic mechanisms remain poorly understood. Here, we performed whole-genome sequencing analysis on 146 nonsyndromic TOF parent-offspring trios of Chinese ethnicity. Comparison of de novo variants and recessive genotypes of this data set with data from a European cohort identified both overlapping and potentially novel gene loci and revealed differential functional enrichment between cohorts. To assess the impact of these mutations on early cardiac development, we integrated single-cell and spatial transcriptomics of early human heart development with our genetic findings. We discovered that the candidate gene expression was enriched in the myogenic progenitors of the cardiac outflow tract. Moreover, subsets of the candidate genes were found in specific gene coexpression modules along the cardiomyocyte differentiation trajectory. These integrative functional analyses help dissect the pathogenesis of TOF, revealing cellular hotspots in early heart development resulting in cardiac malformations.


Asunto(s)
Inducción Embrionaria/genética , Corazón/embriología , Tetralogía de Fallot , Pueblo Asiatico/genética , China/epidemiología , Análisis por Conglomerados , Redes Reguladoras de Genes/genética , Estudios de Asociación Genética/métodos , Variación Genética , Humanos , Miocitos Cardíacos/fisiología , Polimorfismo de Nucleótido Simple , Tetralogía de Fallot/etnología , Tetralogía de Fallot/genética , Secuenciación Completa del Genoma/métodos
16.
Nucleic Acids Res ; 50(6): e34, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-34931221

RESUMEN

Identifying rare variants that contribute to complex diseases is challenging because of the low statistical power in current tests comparing cases with controls. Here, we propose a novel and powerful rare variants association test based on the deviation of the observed mutation burden of a gene in cases from a baseline predicted by a weighted recursive truncated negative-binomial regression (RUNNER) on genomic features available from public data. Simulation studies show that RUNNER is substantially more powerful than state-of-the-art rare variant association tests and has reasonable type 1 error rates even for stratified populations or in small samples. Applied to real case-control data, RUNNER recapitulates known genes of Hirschsprung disease and Alzheimer's disease missed by current methods and detects promising new candidate genes for both disorders. In a case-only study, RUNNER successfully detected a known causal gene of amyotrophic lateral sclerosis. The present study provides a powerful and robust method to identify susceptibility genes with rare risk variants for complex diseases.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Modelos Genéticos , Programas Informáticos , Estudios de Casos y Controles , Simulación por Computador , Humanos , Mutación
17.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34575824

RESUMEN

The development of the enteric nervous system (ENS) is highly modulated by the synchronized interaction between the enteric neural crest cells (ENCCs) and the neural stem cell niche comprising the gut microenvironment. Genetic defects dysregulating the cellular behaviour(s) of the ENCCs result in incomplete innervation and hence ENS dysfunction. Hirschsprung disease (HSCR) is a rare complex neurocristopathy in which the enteric neural crest-derived cells fail to colonize the distal colon. In addition to ENS defects, increasing evidence suggests that HSCR patients may have intrinsic defects in the niche impairing the extracellular matrix (ECM)-cell interaction and/or dysregulating the cellular niche factors necessary for controlling stem cell behaviour. The niche defects in patients may compromise the regenerative capacity of the stem cell-based therapy and advocate for drug- and niche-based therapies as complementary therapeutic strategies to alleviate/enhance niche-cell interaction. Here, we provide a summary of the current understandings of the role of the enteric neural stem cell niche in modulating the development of the ENS and in the pathogenesis of HSCR. Deciphering the contribution of the niche to HSCR may provide important implications to the development of regenerative medicine for HSCR.


Asunto(s)
Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/metabolismo , Enfermedad de Hirschsprung/genética , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Nicho de Células Madre , Animales , Biomarcadores , Diferenciación Celular , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Endotelina-3/metabolismo , Predisposición Genética a la Enfermedad , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Enfermedad de Hirschsprung/diagnóstico , Enfermedad de Hirschsprung/metabolismo , Enfermedad de Hirschsprung/terapia , Humanos , Cresta Neural/citología , Cresta Neural/metabolismo , Receptor de Endotelina B/metabolismo , Medicina Regenerativa , Transducción de Señal
18.
Stroke ; 52(12): 3926-3937, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34565175

RESUMEN

BACKGROUND AND PURPOSE: Experimental studies showed vitamin D (Vit-D) could promote vascular regeneration and repair. Prior randomized studies had focused mainly on primary prevention. Whether Vit-D protects against ischemic stroke and myocardial infarction recurrence among subjects with prior ischemic insults was unknown. Here, we dissected through Mendelian randomization any effect of Vit-D on the secondary prevention of recurrent ischemic stroke and myocardial infarction. METHODS: Based on a genetic risk score for Vit-D constructed from a derivation cohort sample (n=5331, 45% Vit-D deficient, 89% genotyped) via high-throughput exome-chip screening of 12 prior genome-wide association study-identified genetic variants of Vit-D mechanistic pathways (rs2060793, rs4588, and rs7041; F statistic, 73; P<0.001), we performed a focused analysis on prospective recurrence of myocardial infarction (MI) and ischemic stroke in an independent subsample with established ischemic disease (n=441, all with prior first ischemic event; follow-up duration, 41.6±14.3 years) under a 2-sample, individual-data, prospective Mendelian randomization approach. RESULTS: In the ischemic disease subsample, 11.1% (n=49/441) had developed recurrent ischemic stroke or MI and 13.3% (n=58/441) had developed recurrent or de novo ischemic stroke/MI. Kaplan-Meier analyses showed that genetic risk score predicted improved event-free survival from recurrent ischemic stroke or MI (log-rank, 13.0; P=0.001). Cox regression revealed that genetic risk score independently predicted reduced risk of recurrent ischemic stroke or MI combined (hazards ratio, 0.62 [95% CI, 0.48-0.81]; P<0.001), after adjusted for potential confounders. Mendelian randomization supported that Vit-D is causally protective against the primary end points of recurrent ischemic stroke or MI (Wald estimate: odds ratio, 0.55 [95% CI, 0.35-0.81]) and any recurrent or de novo ischemic stroke/MI (odds ratio, 0.64 [95% CI, 0.42-0.91]) and recurrent MI alone (odds ratio, 0.52 [95% CI, 0.30-0.81]). CONCLUSIONS: Genetically predicted lowering in Vit-D level is causal for the recurrence of ischemic vascular events in persons with prior ischemic stroke or MI.


Asunto(s)
Accidente Cerebrovascular Isquémico/genética , Análisis de la Aleatorización Mendeliana , Prevención Secundaria , Vitamina D/genética , Adulto , Anciano , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Accidente Cerebrovascular Isquémico/sangre , Masculino , Persona de Mediana Edad , Infarto del Miocardio/sangre , Infarto del Miocardio/genética , Polimorfismo de Nucleótido Simple , Prevención Secundaria/métodos , Vitamina D/sangre
19.
Front Pediatr ; 9: 638093, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422713

RESUMEN

Hirschsprung disease (HSCR) is the leading cause of neonatal functional intestinal obstruction. It is a rare congenital disease with an incidence of one in 3,500-5,000 live births. HSCR is characterized by the absence of enteric ganglia in the distal colon, plausibly due to genetic defects perturbing the normal migration, proliferation, differentiation, and/or survival of the enteric neural crest cells as well as impaired interaction with the enteric progenitor cell niche. Early linkage analyses in Mendelian and syndromic forms of HSCR uncovered variants with large effects in major HSCR genes including RET, EDNRB, and their interacting partners in the same biological pathways. With the advances in genome-wide genotyping and next-generation sequencing technologies, there has been a remarkable progress in understanding of the genetic basis of HSCR in the past few years, with common and rare variants with small to moderate effects being uncovered. The discovery of new HSCR genes such as neuregulin and BACE2 as well as the deeper understanding of the roles and mechanisms of known HSCR genes provided solid evidence that many HSCR cases are in the form of complex polygenic/oligogenic disorder where rare variants act in the sensitized background of HSCR-associated common variants. This review summarizes the roadmap of genetic discoveries of HSCR from the earlier family-based linkage analyses to the recent population-based genome-wide analyses coupled with functional genomics, and how these discoveries facilitated our understanding of the genetic architecture of this complex disease and provide the foundation of clinical translation for precision and stratified medicine.

20.
PLoS Genet ; 17(8): e1009698, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34358225

RESUMEN

Hirschsprung disease (HSCR) is a complex genetic disease characterized by absence of ganglia in the intestine. HSCR etiology can be explained by a unique combination of genetic alterations: rare coding variants, predisposing haplotypes and Copy Number Variation (CNV). Approximately 18% of patients have additional anatomical malformations or neurological symptoms (HSCR-AAM). Pinpointing the responsible culprits within a CNV is challenging as often many genes are affected. Therefore, we selected candidate genes based on gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics. Next, we used a zebrafish model to investigate whether loss of these genes affects enteric neuron development in vivo. This study included three groups of patients, two groups without coding variants in disease associated genes: HSCR-AAM and HSCR patients without associated anomalies (HSCR-isolated). The third group consisted of all HSCR patients in which a confirmed pathogenic rare coding variant was identified. We compared these patient groups to unaffected controls. Predisposing haplotypes were determined, confirming that every HSCR subgroup had increased contributions of predisposing haplotypes, but their contribution was highest in isolated HSCR patients without RET coding variants. CNV profiling proved that specifically HSCR-AAM patients had larger Copy Number (CN) losses. Gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics were used to determine plausible candidate genes located within CN losses. Validation in zebrafish using CRISPR/Cas9 targeting confirmed the contribution of UFD1L, TBX2, SLC8A1, and MAPK8 to ENS development. In addition, we revealed epistasis between reduced Ret and Gnl1 expression and between reduced Ret and Tubb5 expression in vivo. Rare large CN losses-often de novo-contribute to HSCR in HSCR-AAM patients. We proved the involvement of six genes in enteric nervous system development and Hirschsprung disease.


Asunto(s)
Variaciones en el Número de Copia de ADN , Sistema Nervioso Entérico/crecimiento & desarrollo , Redes Reguladoras de Genes , Enfermedad de Hirschsprung/genética , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Sistema Nervioso Entérico/química , Epistasis Genética , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Ratones , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...