Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Hum Neurosci ; 18: 1364803, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567000

RESUMEN

Human speech production is strongly influenced by the auditory feedback it generates. Auditory feedback-what we hear when we speak-enables us to learn and maintain speaking skills and to rapidly correct errors in our speech. Over the last three decades, the real-time altered auditory feedback (AAF) paradigm has gained popularity as a tool to study auditory feedback control during speech production. This method involves changing a speaker's speech and feeding it back to them in near real time. More than 50% of the world's population speak tonal languages, in which the pitch or tone used to pronounce a word can change its meaning. This review article aims to offer an overview of the progression of AAF paradigm as a method to study pitch motor control among speakers of tonal languages. Eighteen studies were included in the current mini review and were compared based on their methodologies and results. Overall, findings from these studies provide evidence that tonal language speakers can compensate and adapt when receiving inconsistent and consistent pitch perturbations. Response magnitude and latency are influenced by a range of factors. Moreover, by combining AAF with brain stimulation and neuroimaging techniques, the neural basis of pitch motor control in tonal language speakers has been investigated. To sum up, AAF has been demonstrated to be an emerging tool for studying pitch motor control in speakers of tonal languages.

2.
Exp Brain Res ; 241(4): 951-977, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36949150

RESUMEN

Over the last three decades, transcranial magnetic stimulation (TMS) has gained popularity as a tool to modulate human somatosensation. However, the effects of different stimulation types on the multiple distinct subdomains of somatosensation (e.g., tactile perception, proprioception and pain) have not been systematically compared. This is especially notable in the case of newer theta-burst stimulation protocols now in widespread use. Here, we aimed to systematically and critically review the existing TMS literature and provide a complete picture of current knowledge regarding the role of TMS in modulating human somatosensation across stimulation protocols and somatosensory domains. Following the PRISMA guidelines, fifty-four studies were included in the current review and were compared based on their methodologies and results. Overall, findings from these studies provide evidence that different types of somatosensation can be both disrupted and enhanced by targeted stimulation of specific somatosensory areas. Some mixed results, however, were reported in the literature. We discussed possible reasons for these mixed results, methodological limitations of existing investigations, and potential avenues for future research.


Asunto(s)
Percepción del Tacto , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Dolor
3.
J Neurophysiol ; 128(6): 1469-1482, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36350054

RESUMEN

Although movement variability is often attributed to unwanted noise in the motor system, recent work has demonstrated that variability may be actively controlled. To date, research on regulation of motor variability has relied on relatively simple, laboratory-specific reaching tasks. It is not clear how these results translate to complex, well-practiced tasks. Here, we test how variability is regulated during speech production, a complex, highly overpracticed, and natural motor behavior that relies on auditory and somatosensory feedback. Specifically, in a series of four experiments, we assessed the effects of auditory feedback manipulations that modulate perceived speech variability, shifting every production either toward (inward pushing) or away from (outward pushing) the center of the distribution for each vowel. Participants exposed to the inward-pushing perturbation (experiment 1) increased produced variability while the perturbation was applied as well as after it was removed. Unexpectedly, the outward-pushing perturbation (experiment 2) also increased produced variability during exposure, but variability returned to near-baseline levels when the perturbation was removed. Outward-pushing perturbations failed to reduce participants' produced variability both with larger perturbation magnitude (experiment 3) and after their variability had increased above baseline levels as a result of the inward-pushing perturbation (experiment 4). Simulations of the applied perturbations using a state-space model of motor behavior suggest that the increases in produced variability in response to the two types of perturbations may arise through distinct mechanisms. Together, these results suggest that motor variability is actively monitored and can be modulated even in complex and well-practiced behaviors such as speech.NEW & NOTEWORTHY By implementing a novel auditory feedback perturbation that modulates participants' perceived trial-to-trial variability without affecting their overall mean behavior, we show that variability in the speech motor system can be modulated. By assaying speech production, we expand our current understanding of variability to a well-practiced, complex behavior outside of the limb control system. Our results additionally highlight the need to incorporate the active control of variability in models of speech motor control.


Asunto(s)
Percepción del Habla , Habla , Humanos , Habla/fisiología , Percepción del Habla/fisiología , Estimulación Acústica/métodos , Retroalimentación Sensorial/fisiología , Movimiento
4.
Cortex ; 145: 115-130, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34717269

RESUMEN

When auditory feedback perturbation is introduced in a predictable way over a number of utterances, speakers learn to compensate by adjusting their own productions, a process known as sensorimotor adaptation. Despite multiple lines of evidence indicating the role of primary motor cortex (M1) in motor learning and memory, whether M1 causally contributes to sensorimotor adaptation in the speech domain remains unclear. Here, we aimed to assay whether temporary disruption of the articulatory representation in left M1 by repetitive transcranial magnetic stimulation (rTMS) impairs speech adaptation. To induce sensorimotor adaptation, the frequencies of first formants (F1) were shifted up and played back to participants when they produced "head", "bed", and "dead" repeatedly (the learning phase). A low-frequency rTMS train (.6 Hz, subthreshold, 12 min) over either the tongue or the hand representation of M1 (between-subjects design) was applied before participants experienced altered auditory feedback in the learning phase. We found that the group who received rTMS over the hand representation showed the expected compensatory response for the upwards shift in F1 by significantly reducing F1 and increasing the second formant (F2) frequencies in their productions. In contrast, these expected compensatory changes in both F1 and F2 did not occur in the group that received rTMS over the tongue representation. Critically, rTMS (subthreshold) over the tongue representation did not affect vowel production, which was unchanged from baseline. These results provide direct evidence that the articulatory representation in left M1 causally contributes to sensorimotor learning in speech. Furthermore, these results also suggest that M1 is critical to the network supporting a more global adaptation that aims to move the altered speech production closer to a learnt pattern of speech production used to produce another vowel.


Asunto(s)
Corteza Motora , Habla , Adaptación Fisiológica , Retroalimentación Sensorial , Humanos , Estimulación Magnética Transcraneal
5.
J Neurosci ; 41(5): 1059-1067, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33298537

RESUMEN

Speech processing relies on interactions between auditory and motor systems and is asymmetrically organized in the human brain. The left auditory system is specialized for processing of phonemes, whereas the right is specialized for processing of pitch changes in speech affecting prosody. In speakers of tonal languages, however, processing of pitch (i.e., tone) changes that alter word meaning is left-lateralized indicating that linguistic function and language experience shape speech processing asymmetries. Here, we investigated the asymmetry of motor contributions to auditory speech processing in male and female speakers of tonal and non-tonal languages. We temporarily disrupted the right or left speech motor cortex using transcranial magnetic stimulation (TMS) and measured the impact of these disruptions on auditory discrimination (mismatch negativity; MMN) responses to phoneme and tone changes in sequences of syllables using electroencephalography (EEG). We found that the effect of motor disruptions on processing of tone changes differed between language groups: disruption of the right speech motor cortex suppressed responses to tone changes in non-tonal language speakers, whereas disruption of the left speech motor cortex suppressed responses to tone changes in tonal language speakers. In non-tonal language speakers, the effects of disruption of left speech motor cortex on responses to tone changes were inconclusive. For phoneme changes, disruption of left but not right speech motor cortex suppressed responses in both language groups. We conclude that the contributions of the right and left speech motor cortex to auditory speech processing are determined by the functional roles of acoustic cues in the listener's native language.SIGNIFICANCE STATEMENT The principles underlying hemispheric asymmetries of auditory speech processing remain debated. The asymmetry of processing of speech sounds is affected by low-level acoustic cues, but also by their linguistic function. By combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG), we investigated the asymmetry of motor contributions to auditory speech processing in tonal and non-tonal language speakers. We provide causal evidence that the functional role of the acoustic cues in the listener's native language affects the asymmetry of motor influences on auditory speech discrimination ability [indexed by mismatch negativity (MMN) responses]. Lateralized top-down motor influences can affect asymmetry of speech processing in the auditory system.


Asunto(s)
Estimulación Acústica/métodos , Percepción Auditiva/fisiología , Lenguaje , Corteza Motora/fisiología , Percepción del Habla/fisiología , Estimulación Magnética Transcraneal/métodos , Adolescente , Adulto , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Adulto Joven
6.
J Exp Psychol Gen ; 149(1): 94-103, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31157531

RESUMEN

A person's ability to discriminate fine differences in tone frequency is vital for everyday hearing such as listening to speech and music. This ability can be improved through training (i.e., tone frequency learning). Depending on stimulus configurations and training procedures, tone frequency learning can either transfer to new frequencies, which would suggest learning of a general task structure, or show significant frequency specificity, which would suggest either changes in neural representations of trained frequencies, or reweighting of frequency-specific neural responses. Here we tested the hypothesis that frequency specificity in tone frequency learning can be abolished with a double-training procedure. Specifically, participants practiced tone frequency discrimination at 1 or 6 kHz, presumably encoded by different temporal or place coding mechanisms, respectively. The stimuli were brief tone pips known to produce significant specificity. Tone frequency learning was indeed initially highly frequency specific (Experiment 1). However, with additional exposure to the other untrained frequency via an irrelevant temporal interval discrimination task, or even background play during a visual task, learning transferred completely (1-to-6 kHz or 6-to-1 kHz; Experiments 2-4). These results support general task structure learning, or concept learning in our term, in tone frequency learning despite initial frequency specificity. They also suggest strategies to design efficient auditory training in practical settings. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Asunto(s)
Estimulación Acústica/métodos , Aprendizaje Discriminativo/fisiología , Discriminación de la Altura Tonal/fisiología , Adulto , Femenino , Humanos , Masculino , Música , Habla , Adulto Joven
7.
Front Psychol ; 10: 2830, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920863

RESUMEN

Previous studies of tonal speech perception have generally suggested harder or later access to lexical tone than segmental information, but the mechanism underlying the lexical tone disadvantage is unclear. Using a speeded discrimination paradigm free of context information, we confirmed multiple lines of evidence for the lexical tone disadvantage as well as revealed a distinctive advantage of word and atonal syllable judgments over phoneme and lexical tone judgments. The results led us to propose a Reverse Accessing Model (RAM) for tonal speech perception. The RAM is an extension of the influential TRACE model, with two additional processing levels specialized for tonal speech: lexical tone and atonal syllable. Critically, information accessing is assumed to be in reverse order of information processing, and only information at the syllable level and up is maintained active for immediate use. We tested and confirmed the predictions of the RAM on discrimination of each type of phonological component under different stimulus conditions. The current results have thus demonstrated the capability of the RAM as a general framework for tonal speech perception to provide a united account for empirical observations as well as to generate testable predictions.

8.
Front Psychol ; 8: 1086, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28701989

RESUMEN

Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA