Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Front Pharmacol ; 15: 1428406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101131

RESUMEN

Leonurine is an alkaloid unique to the Leonurus genus, which has many biological activities, such as uterine contraction, anti-inflammation, anti-oxidation, regulation of cell apoptosis, anti-tumor, angiogenesis, anti-platelet aggregation, and inhibition of vasoconstriction. This paper summarizes the extraction methods, synthetic pathways, biosynthetic mechanisms, pharmacokinetic properties, pharmacological effects in various diseases, toxicology, and clinical trials of leonurine. To facilitate a successful transition into clinical application, intensified efforts are required in several key areas: structural modifications of leonurine to optimize its properties, comprehensive pharmacokinetic assessments to understand its behavior within the body, thorough mechanistic studies to elucidate how it works at the molecular level, rigorous safety evaluations and toxicological investigations to ensure patient wellbeing, and meticulously conducted clinical trials to validate its efficacy and safety profile.

2.
Mol Cell Biochem ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179754

RESUMEN

The number of breast cancer (BC) patients is increasing year by year, which is severely endangering to human life and health. c-Myc is a transcription factor, studies have shown that it is a very significant factor in tumor progression, but how it is regulated in BC is still not well understood. Here, we used the RIP microarray sequencing to confirm circXPO6, which had a high affinity with c-Myc and highly expressed in triple-negative breast cancer (TNBC) tissues and cells. CircXPO6 overexpression promoted tumor growth in vivo and in vitro. Furthermore, circXPO6 largely promoted the expression of genes related to glucose metabolism, such as GLUT1, HK2, and MCT4 in TNBC cells. Finally, high levels of circXPO6 expression were found to be closely associated with malignant pathological factors, such as tumor size, lymph node metastasis, TNM staging, and histopathological grading of TNBC. Mechanistically, circXPO6 interacted with c-Myc to prevent speckle-type POZ-mediated c-Myc ubiquitination and degradation, thus promoting TNBC progression. Through the regulation of c-Myc-mediated signal transduction, circXPO6 plays a key role in TNBC progresses. This discovery can provide new ideas for TNBC molecular targeted therapy.

3.
J Exp Clin Cancer Res ; 43(1): 230, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153969

RESUMEN

BACKGROUND: tRNA-derived small RNAs (tsRNAs) are newly discovered non-coding RNA, which are generated from tRNAs and are reported to participate in several biological processes in diseases, especially cancer; however, the mechanism of tsRNA involvement in colorectal cancer (CRC) and 5-fluorouracil (5-FU) is still unclear. METHODS: RNA sequencing was performed to identify differential expression of tsRNAs in CRC tissues. CCK8, colony formation, transwell assays, and tumor sphere assays were used to investigate the role of tsRNA-GlyGCC in 5-FU resistance in CRC. TargetScan and miRanda were used to identify the target genes of tsRNA-GlyGCC. Biotin pull-down, RNA pull-down, luciferase assay, ChIP, and western blotting were used to explore the underlying molecular mechanisms of action of tsRNA-GlyGCC. The MeRIP assay was used to investigate the N(7)-methylguanosine RNA modification of tsRNA-GlyGCC. RESULTS: In this study, we uncovered the feature of tsRNAs in human CRC tissues and confirmed a specific 5' half tRNA, 5'tiRNA-Gly-GCC (tsRNA-GlyGCC), which is upregulated in CRC tissues and modulated by METTL1-mediated N(7)-methylguanosine tRNA modification. In vitro and in vivo experiments revealed the oncogenic role of tsRNA-GlyGCC in 5-FU drug resistance in CRC. Remarkably, our results showed that tsRNA-GlyGCC modulated the JAK1/STAT6 signaling pathway by targeting SPIB. Poly (ß-amino esters) were synthesized to assist the delivery of 5-FU and tsRNA-GlyGCC inhibitor, which effectively inhibited tumor growth and enhanced CRC sensitive to 5-FU without obvious adverse effects in subcutaneous tumor. CONCLUSIONS: Our study revealed a specific tsRNA-GlyGCC-engaged pathway in CRC progression. Targeting tsRNA-GlyGCC in combination with 5-FU may provide a promising nanotherapeutic strategy for the treatment of 5-FU-resistance CRC.


Asunto(s)
Neoplasias Colorrectales , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Fluorouracilo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Resistencia a Antineoplásicos/genética , Ratones , Animales , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Línea Celular Tumoral , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , ARN Pequeño no Traducido/genética
4.
J Adv Res ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960276

RESUMEN

INTRODUCTION: Growing interest toward RNA modification in cancer has inspired the exploration of gene sets related to multiple RNA modifications. However, a comprehensive elucidation of the clinical value of various RNA modifications in breast cancer is still lacking. OBJECTIVES: This study aimed to provide a strategy based on RNA modification-related genes for predicting therapy response and survival outcomes in breast cancer patients. METHODS: Genes related to thirteen RNA modification patterns were integrated for establishing a nine-gene-containing signature-RMscore. Alterations of tumor immune microenvironment and therapy response featured by different RMscore levels were assessed by bulk transcriptome, single-cell transcriptome and genomics analyses. The biological function of key RMscore-related molecules was investigated by cellular experiments in vitro and in vivo, using flow cytometry, immunohistochemistry and immunofluorescence staining. RESULTS: This study has raised an effective therapy strategy for breast cancer patients after a well-rounded investigation of RNA modification-related genes. With a great performance of predicting patient prognosis, high levels of the RMscore proposed in this study represented suppressive immune microenvironment and therapy resistance, including adjuvant chemotherapy and PD-L1 blockade treatment. As the key contributor of the RMscore, inhibition of WDR4 impaired breast cancer progression significantly in vitro and in vivo, as well as participated in regulating cell cycle and mTORC1 signaling pathway via m7G modification. CONCLUSION: Briefly, this study has developed promising and effective tactics to achieve the prediction of survival probabilities and treatment response in breast cancer patients.

5.
Cancer Lett ; 598: 217116, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39002694

RESUMEN

Cisplatin is one of the most commonly used drugs for cancer treatment. Despite much progress in improving patient outcomes, many patients are resistant to cisplatin-based treatments, leading to limited treatment efficacy and increased treatment failure. The fact that solid tumors suffer from hypoxia and an inadequate blood supply in the tumor microenvironment has been widely accepted for decades. Numerous studies have shown that a hypoxic microenvironment significantly reduces the sensitivity of tumor cells to cisplatin. Therefore, understanding how hypoxia empowers tumor cells with cisplatin resistance is essential. In the fight against tumors, developing innovative strategies for overcoming drug resistance has attracted widespread interest. Natural products have historically made major contributions to anticancer drug research due to their obvious efficacy and abundant candidate resources. Intriguingly, natural products show the potential to reverse chemoresistance, which provides new insights into cisplatin resistance in the hypoxic tumor microenvironment. In this review, we describe the role of cisplatin in tumor therapy and the mechanisms by which tumor cells generate cisplatin resistance. Subsequently, we call attention to the linkage between the hypoxic microenvironment and cisplatin resistance. Furthermore, we summarize known and potential natural products that target the hypoxic tumor microenvironment to overcome cisplatin resistance. Finally, we discuss the current challenges that limit the clinical application of natural products. Understanding the link between hypoxia and cisplatin resistance is the key to unlocking the full potential of natural products, which will serve as new therapeutic strategies capable of overcoming resistance.


Asunto(s)
Antineoplásicos , Productos Biológicos , Cisplatino , Resistencia a Antineoplásicos , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales , Hipoxia de la Célula/efectos de los fármacos
6.
Adv Sci (Weinh) ; : e2309903, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073262

RESUMEN

Aggressive triple-negative breast cancer (TNBC) still lacks approved targeted therapies, requiring more exploration of its underlying mechanisms. Previous studies have suggested a potential role of SAT1 (Spermidine/Spermine N1-acetyltransferase 1) in cancer, which needs to be further elucidated in breast cancer. In this study, highly expressed SAT1 in TNBC signified worse patient prognoses. And SAT1 knockdown effectively inhibited the proliferation and migration abilities of TNBC cells in vitro and in vivo. In terms of mechanism, the transcription factor JUN enhanced SAT1 transcriptional activity by binding to its promoter region. Then, SAT1 protein in the cytoplasm engaged in directly binding with YBX1 for sustaining YBX1 protein stability via deubiquitylation mediated by the E3 ligase HERC5. Further, SAT1 was found to suppress autophagy remarkably via stabilization of mTOR mRNA with the accumulation of YBX1-mediated methyl-5-cytosine (m5C) modification. These findings proved that SAT1 drives TNBC progression through the SAT1/YBX1/mTOR axis, which may provide a potential candidate for targeted therapy in advanced TNBC.

7.
Drug Resist Updat ; 75: 101099, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850692

RESUMEN

Anoikis, known as matrix detachment-induced apoptosis or detachment-induced cell death, is crucial for tissue development and homeostasis. Cancer cells develop means to evade anoikis, e.g. anoikis resistance, thereby allowing for cells to survive under anchorage-independent conditions. Uncovering the mechanisms of anoikis resistance will provide details about cancer metastasis, and potential strategies against cancer cell dissemination and metastasis. Here, we summarize the principal elements and core molecular mechanisms of anoikis and anoikis resistance. We discuss the latest progress of how anoikis and anoikis resistance are regulated in cancers. Furthermore, we summarize emerging data on selective compounds and nanomedicines, explaining how inhibiting anoikis resistance can serve as a meaningful treatment modality against cancers. Finally, we discuss the key limitations of this therapeutic paradigm and possible strategies to overcome them. In this review, we suggest that pharmacological modulation of anoikis and anoikis resistance by bioactive compounds could surmount anoikis resistance, highlighting a promising therapeutic regimen that could be used to overcome anoikis resistance in cancers.


Asunto(s)
Anoicis , Antineoplásicos , Neoplasias , Anoicis/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Metástasis de la Neoplasia
8.
Oncol Res ; 32(6): 1129-1139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827325

RESUMEN

Circular RNAs (circRNAs) have been recognized as pivotal regulators in tumorigenesis, yet the biological functions as well as molecular mechanisms of the majority of circRNAs in hepatocellular carcinoma (HCC) remain elusive. We sought to unveil the expression profile and biological role of circMYBL2 in HCC. Initial microarray analyses were conducted to probe the expression profile of circMYBL2 in HCC cells, and qRT‒PCR analysis was then performed in HCC cell lines and tissues, revealing significant upregulation of circMYBL2. Subsequent experiments were conducted to evaluate the biological function of circMYBL2 in HCC progression. Furthermore, bioinformatics analysis, qRT‒PCR analysis, luciferase reporter assays, and western blot analysis were employed to investigate the interplay among circMYBL2, miR-1205, and E2F1. CircMYBL2 was found to exhibit marked upregulation in tumor tissues as well as HCC cell lines. Elevated expression of circMYBL2 increased the proliferation and migration of HCC cells, whereas circMYBL2 knockdown elicited contrasting effects. Mechanistically, our results indicated that circMYBL2 promoted E2F1 expression and facilitated HCC progression by sponging miR-1205. Our findings revealed that circMYBL2 contributed to HCC progression through the circMYBL2/miR-1205/E2F1 axis, suggesting the potential of circMYBL2 as a novel target for HCC treatment or a prognostic biomarker for HCC.


Asunto(s)
Carcinoma Hepatocelular , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Factor de Transcripción E2F1 , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , MicroARNs , ARN Circular , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , ARN Circular/genética , Proliferación Celular/genética , Línea Celular Tumoral , MicroARNs/genética , Movimiento Celular/genética , Ratones , Pronóstico
9.
Cell Prolif ; : e13697, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943472

RESUMEN

Distant metastasis remains the primary cause of morbidity in patients with breast cancer. Hence, the development of more efficacious strategies and the exploration of potential targets for patients with metastatic breast cancer are urgently needed. The data of six patients with breast cancer brain metastases (BCBrM) from two centres were collected, and a comprehensive landscape of the entire tumour ecosystem was generated through the utilisation of single-cell RNA sequencing. We utilised the Monocle2 and CellChat algorithms to investigate the interrelationships among each subcluster. In addition, multiple signatures were collected to evaluate key components of the subclusters through multi-omics methodologies. Finally, we elucidated common expression programs of malignant cells, and experiments were conducted in vitro and in vivo to determine the functions of interleukin enhancer-binding factor 2 (ILF2), which is a key gene in the metastasis module, in BCBrM progression. We found that subclusters in each major cell type exhibited diverse characteristics. Besides, our study indicated that ILF2 was specifically associated with BCBrM, and experimental validations further demonstrated that ILF2 deficiency hindered BCBrM progression. Our study offers novel perspectives on the heterogeneity of BCBrM and suggests that ILF2 could serve as a promising biomarker or therapeutic target for BCBrM.

10.
Imeta ; 3(1): e156, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38868510

RESUMEN

Gut microbiota is essential for maintaining local and systemic immune homeostasis in the presence of bacterial challenges. It has been demonstrated that microbiota play contrasting roles in cancer development as well as anticancer immunity. Cancer immunotherapy, a novel anticancer therapy that relies on the stimulation of host immunity, has suffered from a low responding rate and incidence of severe immune-related adverse events (irAEs). Previous studies have demonstrated that the diversity and composition of gut microbiota were associated with the heterogeneity of therapeutic effects. Therefore, alteration in microbiota taxa can lead to improved clinical outcomes in immunotherapy. In this review, we determine whether microbiota composition or microbiota-derived metabolites are linked to responses to immunotherapy and irAEs. Moreover, we discuss various approaches to improve immunotherapy efficacy or reduce toxicities by modulating microbiota composition.

11.
Sci China Life Sci ; 67(9): 1849-1866, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38900236

RESUMEN

The spreading of cancer cells from the primary tumor site to other parts of the body, known as metastasis, is the leading cause of cancer recurrence and mortality in patients with triple-negative breast cancer (TNBC). Overexpression of epidermal growth factor receptor (EGFR) is observed in approximately 70% of TNBC patients. EGFR is crucial for promoting tumor metastasis and associated with poor prognosis. Therefore, it is vital to identify effective therapeutic strategies targeting EGFR inhibition. Ononin, an isoflavonoid found in various plants, such as clover and soybeans, has been shown to have anticancer properties in several cancers. In the present study, we aimed to investigate the effects of ononin on TNBC lung metastasis and the associated molecular pathways. We used various assays, including cell viability, colony formation, Transwell, wound healing, ELISA, Western blotting, and staining techniques, to achieve this objective. The results demonstrated that ononin effectively suppressed cellular proliferation and induced apoptosis, as evidenced by the cell viability assay, colony formation assay, and expression of apoptosis markers, and reduced the metastatic capabilities of TNBC cells. These effects were achieved through the direct suppression of cell adhesion, invasiveness and motility. Furthermore, in TNBC xenograft lung metastatic models, ononin treatment significantly reduced tumor growth and lung metastasis. Additionally, ononin reversed the epithelial-mesenchymal transition (EMT) by downregulating the expression of EMT markers and matrix metalloproteinases, as confirmed by Western blot analysis. Furthermore, ononin treatment reduced EGFR phosphorylation and suppressed the PI3K, Akt, and mTOR signaling pathways, which was further confirmed using EGFR agonists or inhibitors. Importantly, ononin treatment did not exert any toxic effects on liver or kidney function. In conclusion, our findings suggest that ononin is a safe and potentially therapeutic treatment for TNBC metastasis that targets the EGFR-mediated PI3K/Akt/mTOR pathway. Further studies are warranted to validate its efficacy and explore its potential clinical applications.


Asunto(s)
Apoptosis , Proliferación Celular , Receptores ErbB , Neoplasias Pulmonares , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Serina-Treonina Quinasas TOR/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Femenino , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Ratones Desnudos
12.
MedComm (2020) ; 5(5): e562, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38737470

RESUMEN

The proteasome inhibitor bortezomib (BTZ) is the first-line therapy for multiple myeloma (MM). BTZ resistance largely limits its clinical application in MM. Interleukin-33 (IL-33) exerts antitumor effects through various mechanisms, including enhancing antitumor immunity and promoting the apoptosis of cancer cells. Here, the synergistic anti-MM effect of IL-33 and BTZ was verified, and the underlying mechanisms were elucidated. Bioinformatic analysis indicated that IL-33 expression levels were downregulated in MM, and that BTZ-treated MM patients with high IL-33 levels had better prognosis than those with low IL-33 levels. Moreover, the patients with high IL-33 levels had a better treatment response to BTZ. Further immune analysis suggested that IL-33 can enhance the anti-MM immunity. IL-33 and BTZ synergistically inhibited proliferation and induced apoptosis of MM cells, which was mediated by the excessive accumulation of cellular reactive oxygen species (ROS). Furthermore, increased ROS hindered the nuclear translocation of NF-κB-p65, thereby decreasing the transcription of target stemness-related genes (SOX2, MYC, and OCT3/4). These effects induced by the combination therapy could be reversed by eliminating ROS by N-acetylcysteine. In conclusion, our results indicated that IL-33 enhanced the sensitivity of MM to BTZ through ROS-mediated inhibition of nuclear factor kappa-B (NF-κB) signal and stemness properties.

13.
Front Pharmacol ; 15: 1400699, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756373

RESUMEN

The therapeutic effect of chemotherapy and targeted therapy are known to be limited by drug resistance. Substantial evidence has shown that ATP-binding cassette (ABC) transporters P-gp and BCRP are significant contributors to multidrug resistance (MDR) in cancer cells. In this study, we demonstrated that a clinical-staged ATR inhibitor ceralasertib is susceptible to P-gp and BCRP-mediated MDR. The drug resistant cancer cells were less sensitive to ceralasertib compared to the parental cells. Moreover, ceralasertib resistance can be reversed by inhibiting the drug efflux activity of P-gp and BCRP. Interestingly, ceralasertib was able to downregulate the level of P-gp but not BCRP, suggesting a potential regulation between ATR signaling and P-gp expression. Furthermore, computational docking analysis predicted high affinities between ceralasertib and the drug-binding sites of P-gp and BCRP. In summary, overexpression of P-gp and BCRP are sufficient to confer cancer cells resistance to ceralasertib, underscoring their role as biomarkers for therapeutic efficacy.

14.
Biosens Bioelectron ; 258: 116373, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38729048

RESUMEN

Breast cancer is reported to be one of the most lethal cancers in women, and its multi-target detection can help improve the accuracy of diagnosis. In this work, a cluster regularly interspaced short palindromic repeats (CRISPR)-Cas13a/Cas12a-based system was established for the simultaneous fluorescence detection of breast cancer biomarkers circROBO1 and BRCA1. CRISPR-Cas13a and CRISPR-Cas12a were directly activated by their respective targets, resulting in the cleavage of short RNA and DNA reporters, respectively, thus the signals of 6-carboxyfluorescein (FAM) and 6-carboxy-xrhodamine (ROX) were restored. As the fluorescence intensities of FAM and ROX were dependent on the concentrations of circROBO1 and BRCA1, respectively, synchronous fluorescence scanning could achieve one-step detection of circROBO1 and BRCA1 with detection limits of 0.013 pM and 0.26 pM, respectively. The system was highly sensitive and specific, holding high diagnostic potential for the detection of clinical samples. Furthermore, the competing endogenous RNA mechanism between circROBO1 and BRCA1 was also explored, providing a reliable basis for the intrinsic regulatory mechanism of breast cancer.


Asunto(s)
Proteína BRCA1 , Biomarcadores de Tumor , Técnicas Biosensibles , Neoplasias de la Mama , Sistemas CRISPR-Cas , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/diagnóstico , Femenino , Biomarcadores de Tumor/genética , Técnicas Biosensibles/métodos , Proteína BRCA1/genética , ARN Circular/genética , Límite de Detección , Fluoresceínas/química , Proteínas Asociadas a CRISPR/genética
15.
Front Immunol ; 15: 1382520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698857

RESUMEN

Background: The Y-box-binding proteins (YBX) act as a multifunctional role in tumor progression, metastasis, drug resistance by regulating the transcription and translation process. Nevertheless, their functions in a pan-cancer setting remain unclear. Methods: This study examined the clinical features expression, prognostic value, mutations, along with methylation patterns of three genes from the YBX family (YBX1, YBX2, and YBX3) in 28 different types of cancer. Data used for analysis were obtained from Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. A novel YBXs score was created using the ssGSEA algorithm for the single sample gene set enrichment analysis. Additionally, we explored the YBXs score's association with the tumor microenvironment (TME), response to various treatments, and drug resistance. Results: Our analysis revealed that YBX family genes contribute to tumor progression and are indicative of prognosis in diverse cancer types. We determined that the YBXs score correlates significantly with numerous malignant pathways in pan-cancer. Moreover, this score is also linked with multiple immune-related characteristics. The YBXs score proved to be an effective predictor for the efficacy of a range of treatments in various cancers, particularly immunotherapy. To summarize, the involvement of YBX family genes is vital in pan-cancer and exhibits a significant association with TME. An elevated YBXs score indicates an immune-activated TME and responsiveness to diverse therapies, highlighting its potential as a biomarker in individuals with tumors. Finally, experimental validations were conducted to explore that YBX2 might be a potential biomarker in liver cancer. Conclusion: The creation of YBXs score in our study offered new insights into further studies. Besides, YBX2 was found as a potential therapeutic target, significantly contributing to the improvement of HCC diagnosis and treatment strategies.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Biomarcadores de Tumor/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/diagnóstico , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Pronóstico , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Mutación , Resistencia a Antineoplásicos/genética , Perfilación de la Expresión Génica , Línea Celular Tumoral , Metilación de ADN
16.
CNS Neurosci Ther ; 30(4): e14735, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38676299

RESUMEN

The etiology of epilepsy is ascribed to the synchronized aberrant neuronal activity within the brain. Circular RNAs (circRNAs), a class of non-coding RNAs characterized by their circular structures and covalent linkage, exert a substantial influence on this phenomenon. CircRNAs possess stereotyped replication, transience, repetitiveness, and paroxysm. Additionally, MicroRNA (miRNA) plays a crucial role in the regulation of diverse pathological processes, including epilepsy. CircRNA is of particular significance due to its ability to function as a competing endogenous RNA, thereby sequestering or inhibiting miRNA activity through binding to target mRNA. Our review primarily concentrates on elucidating the pathological and functional roles, as well as the underlying mechanisms, of circRNA-miRNA-mRNA networks in epilepsy. Additionally, it explores the potential utility of these networks for early detection and therapeutic intervention.


Asunto(s)
Epilepsia , Redes Reguladoras de Genes , MicroARNs , ARN Circular , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Epilepsia/genética , Epilepsia/metabolismo , Redes Reguladoras de Genes/fisiología , Redes Reguladoras de Genes/genética , Animales , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Endógeno Competitivo
17.
Cancer Lett ; 592: 216907, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38685451

RESUMEN

Cancer metastasis is the major cause of death in patients with breast cancer (BC). The liver is a common site of breast cancer metastasis, and the 5-year survival rate of patients with breast cancer liver metastases (BCLMs) is only about 8.5 %. CircRNAs are involved in a variety of cancer-related pathological behaviors, and their unique structure and resistance to RNA degradation enable them to serve as ideal diagnostic biomarkers and therapeutic targets. Therefore, it is important to investigate the role and molecular mechanism of circRNAs in cancer metastasis. CircLIFR-007 was identified as a critical circular RNA in BC metastasis by circRNAs microarray and qRT-PCR experiment. Cell function assays were performed to explore the effect of circLIFR-007 in breast cancer cells. Experiments in vivo validated the function of circLIFR-007. Several molecular assays were performed to investigate the underlying mechanisms. We found that circLIFR-007 acted as a negative controller in breast cancer liver metastasis. CircLIFR-007 upregulates the phosphorylation level of YAP by exporting hnRNPA1 to promote the combination between hnRNPA1 and YAP in the cytoplasm. Overexpression of circLIFR-007 suppressed the expression of liver metastasis-related proteins, SREBF1 and SNAI1, which were regulated by transcription factor YAP. Functionally, circLIFR-007 inhibits the proliferation and metastasis of breast cancer cells both in vivo and in vitro.


Asunto(s)
Neoplasias de la Mama , Ribonucleoproteína Nuclear Heterogénea A1 , Neoplasias Hepáticas , ARN Circular , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Femenino , Proteínas Señalizadoras YAP/metabolismo , Fosforilación , Animales , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , ARN Circular/genética , ARN Circular/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ratones , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Transporte Activo de Núcleo Celular , Ratones Desnudos , Proliferación Celular , Ratones Endogámicos BALB C , Células MCF-7
18.
Adv Sci (Weinh) ; 11(23): e2401061, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569519

RESUMEN

The heterogeneity of macrophages influences the response to immune checkpoint inhibitor (ICI) therapy. However, few studies explore the impact of APOE+ macrophages on ICI therapy using single-cell RNA sequencing (scRNA-seq) and machine learning methods. The scRNA-seq and bulk RNA-seq data are Integrated to construct an M.Sig model for predicting ICI response based on the distinct molecular signatures of macrophage and machine learning algorithms. Comprehensive single-cell analysis as well as in vivo and in vitro experiments are applied to explore the potential mechanisms of the APOE+ macrophage in affecting ICI response. The M.Sig model shows clear advantages in predicting the efficacy and prognosis of ICI therapy in pan-cancer patients. The proportion of APOE+ macrophages is higher in ICI non-responders of triple-negative breast cancer compared with responders, and the interaction and longer distance between APOE+ macrophages and CD8+ exhausted T (Tex) cells affecting ICI response is confirmed by multiplex immunohistochemistry. In a 4T1 tumor-bearing mice model, the APOE inhibitor combined with ICI treatment shows the best efficacy. The M.Sig model using real-world immunotherapy data accurately predicts the ICI response of pan-cancer, which may be associated with the interaction between APOE+ macrophages and CD8+ Tex cells.


Asunto(s)
Apolipoproteínas E , Inhibidores de Puntos de Control Inmunológico , Macrófagos , Análisis de la Célula Individual , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Animales , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Análisis de la Célula Individual/métodos , Humanos , Apolipoproteínas E/genética , Modelos Animales de Enfermedad , Femenino , Aprendizaje Automático , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos
19.
Adv Sci (Weinh) ; 11(28): e2400206, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38639442

RESUMEN

Ulcerative colitis (UC) is a complicated and recurrent intestinal disease. Currently available drugs for UC treatment are scarce, therefore, novel therapeutic drugs for the UC are urgently to be developed. Gingerenone A (GA) is a phenolic compound known for its anti-inflammatory effect, but its effect on UC remains unknown. Here, it is shown that GA protects mice against UC, which is closely associated with inhibiting intestinal mucosal inflammation and enhancing intestinal barrier integrity in vivo and in vitro. Of note, RNA sequencing analysis demonstrates an evident correlation with IL-17 signaling pathway after GA treatment, and this effect is further corroborated by Western blot. Mechanistically, GA directly interacts with IL-17RA protein through pull-down, surface plasmon resonance analysis and molecular dynamics simulation. Importantly, lentivirus-mediated IL-17RA/Act1 knock-down or GA co-treatment with brodalumab/ixekizumab significantly impairs the protective effects of GA against DSS-induced inflammation and barrier dysfunction, suggesting a critical role of IL-17RA signaling for GA-mediated protection against UC. Overall, these results indicate that GA is an effective agent against UC mainly through the direct binding of IL-17RA to inhibit inflammatory signaling activation.


Asunto(s)
Colitis Ulcerosa , Modelos Animales de Enfermedad , Mucosa Intestinal , Receptores de Interleucina-17 , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Funcion de la Barrera Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Ratones Endogámicos C57BL , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/genética , Transducción de Señal/efectos de los fármacos
20.
Front Pharmacol ; 15: 1386929, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606172

RESUMEN

CDK8 is an important member of the cyclin-dependent kinase family associated with transcription and acts as a key "molecular switch" in the Mediator complex. CDK8 regulates gene expression by phosphorylating transcription factors and can control the transcription process through Mediator complex. Previous studies confirmed that CDK8 is an important oncogenic factor, making it a potential tumor biomarker and a promising target for tumor therapy. However, CDK8 has also been confirmed to be a tumor suppressor, indicating that it not only promotes the development of tumors but may also be involved in tumor suppression. Therefore, the dual role of CDK8 in the process of tumor development is worth further exploration and summary. This comprehensive review delves into the intricate involvement of CDK8 in transcription-related processes, as well as its role in signaling pathways related to tumorigenesis, with a focus on its critical part in driving cancer progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...