RESUMEN
Amyloid-ß pathology and neurofibrillary tangles lead to glial activation and neurodegeneration in Alzheimer's disease. In this study, we investigated the relationships between the levels of amyloid-ß oligomers, amyloid-ß plaques, glial activation and markers related to neurodegeneration in the App NL-G-F triple mutation mouse line and in a knock-in line homozygous for the common human amyloid precursor protein (App hu mouse). The relationships between neuropathological features were characterized with immunohistochemistry and imaging mass cytometry. Markers assessing human amyloid-ß proteins, microglial and astrocytic activation and neuronal and synaptic densities were used in mice between 2.5 and 12 months of age. We found that amyloid-ß oligomers were abundant in the brains of App hu mice in the absence of classical amyloid-ß plaques. These brains showed morphological changes consistent with astrocyte activation but no evidence of microglial activation or synaptic or neuronal pathology. In contrast, both high levels of amyloid-ß oligomers and numerous plaques accumulated in App NL-G-F mice in association with substantial astrocytic and microglial activation. The increase in amyloid-ß oligomers over time was more strongly correlated with astrocytic than with microglia activation. Spatial analyses suggested that activated microglia were more closely associated with amyloid-ß oligomers than with amyloid-ß plaques in App NL-G-F mice, which also showed age-dependent decreases in neuronal and synaptic density markers. A comparative study of the two models highlighted the dependence of glial and neuronal pathology on the nature and aggregation state of the amyloid-ß peptide. Astrocyte activation and neuronal pathology appeared to be more strongly associated with amyloid-ß oligomers than with amyloid-ß plaques, although amyloid-ß plaques were associated with microglia activation.
RESUMEN
Lipids play crucial roles in the susceptibility and brain cellular responses to Alzheimer's disease (AD) and are increasingly considered potential soluble biomarkers in cerebrospinal fluid (CSF) and plasma. To delineate the pathological correlations of distinct lipid species, we conducted a comprehensive characterization of both spatially localized and global differences in brain lipid composition in AppNL-G-F mice with spatial and bulk mass spectrometry lipidomic profiling, using human amyloid-expressing (h-Aß) and WT mouse brains controls. We observed age-dependent increases in lysophospholipids, bis(monoacylglycerol) phosphates, and phosphatidylglycerols around Aß plaques in AppNL-G-F mice. Immunohistology-based co-localization identified associations between focal pro-inflammatory lipids, glial activation, and autophagic flux disruption. Likewise, in human donors with varying Braak stages, similar studies of cortical sections revealed co-expression of lysophospholipids and ceramides around Aß plaques in AD (Braak stage V/VI) but not in earlier Braak stage controls. Our findings in mice provide evidence of temporally and spatially heterogeneous differences in lipid composition as local and global Aß-related pathologies evolve. Observing similar lipidomic changes associated with pathological Aß plaques in human AD tissue provides a foundation for understanding differences in CSF lipids with reported clinical stage or disease severity.
Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Espectrometría de Masas , Ratones Transgénicos , Placa Amiloide , Animales , Humanos , Placa Amiloide/patología , Placa Amiloide/metabolismo , Ratones , Espectrometría de Masas/métodos , Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Masculino , Femenino , Metabolismo de los Lípidos/fisiología , Lisofosfolípidos/metabolismo , Anciano , Ratones Endogámicos C57BL , Lípidos/análisis , Lipidómica/métodosRESUMEN
Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.
Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Animales , Ratones , Enfermedades Neurodegenerativas/genética , Macrófagos , Células Mieloides , Flujo GenéticoRESUMEN
Pangolins are one of nature's most fascinating species being scales covered and myrmecophagous diet, yet relatively little is known about the molecular basis. Here, we combine the multi-omics, evolution, and fundamental proteins feature analysis of both Chinese and Malayan pangolins, highlighting the molecular mechanism of both myrmecophagous diet and scale formation, representing a fascinating evolutionary strategy to occupy the unique ecological niches. In contrast to conserved organization of epidermal differentiation complex, pangolin has undergone large scale variation and gene loss events causing expression pattern and function conversion that contribute to cornified epithelium structures on stomach to adapt myrmecophagous diet. Our assemblies also enable us to discover large copies number of high glycine-tyrosine keratin-associated proteins (HGT-KRTAPs). In addition, highly homogenized tandem array, amino content, and the specific expression pattern further validate the strong connection between the molecular mechanism of scale hardness and HGT-KRTAPs.
Asunto(s)
Genoma , Pangolines , Animales , DietaRESUMEN
The velocity of cloud droplets has a significant effect on the investigation of the turbulence-cloud microphysics interaction mechanism. The paper proposes an in-line digital holographic interferometry (DHI) technique based on depth expansion and self-fusion algorithm to simultaneously extract particle velocity from eight holograms. In comparison to the two-frame exposure method, the extraction efficiency of velocity is raised by threefold, and the number of reference particles used for particle registration is increased to eight. The experimental results obtained in the cloud chamber show that the velocity of cloud droplets increases fourfold from the stabilization phase to the dissipation phase. The measurement deviations of two phases are 1.138 and 1.153 mm/s, respectively. Additionally, this method provides a rapid solution for three-dimensional particle velocimetry investigation of turbulent field stacking and cloud droplets collisions.
RESUMEN
Fusion genes represent a class of attractive therapeutic targets. Thousands of fusion genes have been identified in patients with cancer, but the functional consequences and therapeutic implications of most of these remain largely unknown. Here, we develop a functional genomic approach that consists of efficient fusion reconstruction and sensitive cell viability and drug response assays. Applying this approach, we characterize ~100 fusion genes detected in patient samples of The Cancer Genome Atlas, revealing a notable fraction of low-frequency fusions with activating effects on tumor growth. Focusing on those in the RTK-RAS pathway, we identify a number of activating fusions that can markedly affect sensitivity to relevant drugs. Last, we propose an integrated, level-of-evidence classification system to prioritize gene fusions systematically. Our study reiterates the urgent clinical need to incorporate similar functional genomic approaches to characterize gene fusions, thereby maximizing the utility of gene fusions for precision oncology.
Asunto(s)
Neoplasias , Fusión Génica , Genoma , Genómica , Humanos , Neoplasias/genética , Medicina de PrecisiónRESUMEN
PURPOSE: Cell-free DNA (cfDNA) analysis offers a noninvasive means to access the tumor genome. Despite limited sensitivity of broad-panel sequencing for detecting low-frequency mutations in cfDNA, it may enable more comprehensive genomic characterization in patients with sufficiently high disease burden. We investigated the utility of large-panel cfDNA sequencing in patients enrolled to a Phase I AKT1-mutant solid tumor basket study. METHODS: Patients had AKT1 E17K-mutant solid tumors and were treated on the multicenter basket study (ClinicalTrials.gov identifier: NCT01226316) of capivasertib, an AKT inhibitor. Serial plasma samples were prospectively collected and sequenced using exon-capture next-generation sequencing (NGS) analysis of 410 genes (Memorial Sloan Kettering [MSK]-Integrated Molecular Profiling of Actionable Cancer Target [IMPACT]) and allele-specific droplet digital polymerase chain reaction (ddPCR) for AKT1 E17K. Tumor DNA (tDNA) NGS (MSK-IMPACT) was also performed on available pretreatment tissue biopsy specimens. RESULTS: Among 25 patients, pretreatment plasma samples were sequenced to an average coverage of 504×. Somatic mutations were called in 20/25 (80%), with mutant allele fractions highly concordant with ddPCR of AKT1 E17K (r 2 = 0.976). Among 17 of 20 cfDNA-positive patients with available tDNA for comparison, mutational concordance was acceptable, with 82% of recurrent mutations shared between tissue and plasma. cfDNA NGS captured additional tumor heterogeneity, identifying mutations not observed in tDNA in 38% of patients, and revealed oncogenic mutations in patients without available baseline tDNA. Longitudinal cfDNA NGS (n = 98 samples) revealed distinct patterns of clonal dynamics in response to therapy. CONCLUSION: Large gene panel cfDNA NGS is feasible for patients with high disease burden and is concordant with single-analyte approaches, providing a robust alternative to ddPCR with greater breadth. cfDNA NGS can identify heterogeneity and potentially biologically informative and clinically relevant alterations.
Asunto(s)
ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Neoplasias/genética , Genoma , Humanos , Estudios ProspectivosRESUMEN
Through the microarray analysis, long noncoding RNA TPT1-AS1 (TPT1-AS1) was identified in the development of glioma. However, the specific effect of TPT1-AS1 on glioma autophagy in the recent years has not fully been investigated. Therefore, the purpose of our present study is to investigate the function of TPT1-AS1 on affecting autophagy of glioma cells through regulation of microRNA-770-5p (miR-770-5p)-mediated stathmin 1 (STMN1). Initially, the expression of TPT1-AS1, miR-770-5p, and STMN1 were determined in glioma cell lines, followed by the prediction and validation of their interaction. After that, the effects of TPT1-AS1, miR-770-5p, and STMN1 on the in vitro glioma cell proliferation and autophagy were assessed using EdU assay and macrophage-derived chemokine (MDC) and on the in vivo tumor development and autophagy were evaluated using a nude mouse xenograft tumor assay and immunofluorescence assay. In comparison with the normal cells, the glioma cells displayed upregulated expression of TPT1-AS1 and STMN1, but a downregulated miR-770-5p expression. miR-770-5p, which directly targeted STMN1, could be downregulated by TPT1-AS1. Subsequently, in glioma cells, TPT1-AS1 can function to competitively bind to miR-770-5p, thus regulatEing STMN1 expression. Moreover, glioma cell proliferation and autophagy could be mediated through the TPT1-AS1/miR-770-5p/STMN1 axis. From our data we conclude an inhibitory function of TPT1-AS1 in glioma cell autophagy by downregulating miR-770-5p and upregulating STMN1, which may be instrumental for the therapeutic targeting and clinical management of glioma.
Asunto(s)
Glioma , MicroARNs , ARN Largo no Codificante , Animales , Humanos , Ratones , Apoptosis/genética , Autofagia/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioma/genética , Glioma/patología , Glioma/terapia , MicroARNs/genética , ARN Largo no Codificante/genética , Estatmina/genética , Proteína Tumoral Controlada Traslacionalmente 1 , Ensayos Antitumor por Modelo de Xenoinjerto , ARN sin SentidoRESUMEN
BACKGROUND: Genomic rearrangements exert a heavy influence on the molecular landscape of cancer. New analytical approaches integrating somatic structural variants (SSVs) with altered gene features represent a framework by which we can assign global significance to a core set of genes, analogous to established methods that identify genes non-randomly targeted by somatic mutation or copy number alteration. While recent studies have defined broad patterns of association involving gene transcription and nearby SSV breakpoints, global alterations in DNA methylation in the context of SSVs remain largely unexplored. RESULTS: By data integration of whole genome sequencing, RNA sequencing, and DNA methylation arrays from more than 1400 human cancers, we identify hundreds of genes and associated CpG islands (CGIs) for which the nearby presence of a somatic structural variant (SSV) breakpoint is recurrently associated with altered expression or DNA methylation, respectively, independently of copy number alterations. CGIs with SSV-associated increased methylation are predominantly promoter-associated, while CGIs with SSV-associated decreased methylation are enriched for gene body CGIs. Rearrangement of genomic regions normally having higher or lower methylation is often involved in SSV-associated CGI methylation alterations. Across cancers, the overall structural variation burden is associated with a global decrease in methylation, increased expression in methyltransferase genes and DNA damage response genes, and decreased immune cell infiltration. CONCLUSION: Genomic rearrangement appears to have a major role in shaping the cancer DNA methylome, to be considered alongside commonly accepted mechanisms including histone modifications and disruption of DNA methyltransferases.
Asunto(s)
Epigenoma , Variación Estructural del Genoma , Neoplasias/genética , Islas de CpG , HumanosRESUMEN
The 'Competing interests' statement of this Article has been updated; please see the accompanying Amendment. The original Article has not been corrected online.
RESUMEN
A systematic cataloging of genes affected by genomic rearrangement, using multiple patient cohorts and cancer types, can provide insight into cancer-relevant alterations outside of exomes. By integrative analysis of whole-genome sequencing (predominantly low pass) and gene expression data from 1,448 cancers involving 18 histopathological types in The Cancer Genome Atlas, we identified hundreds of genes for which the nearby presence (within 100 kb) of a somatic structural variant (SV) breakpoint is associated with altered expression. While genomic rearrangements are associated with widespread copy-number alteration (CNA) patterns, approximately 1,100 genes-including overexpressed cancer driver genes (e.g., TERT, ERBB2, CDK12, CDK4) and underexpressed tumor suppressors (e.g., TP53, RB1, PTEN, STK11)-show SV-associated deregulation independent of CNA. SVs associated with the disruption of topologically associated domains, enhancer hijacking, or fusion transcripts are implicated in gene upregulation. For cancer-relevant pathways, SVs considerably expand our understanding of how genes are affected beyond point mutation or CNA.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico/genética , Genes Relacionados con las Neoplasias , Genoma Humano , Neoplasias/genética , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/patología , Variaciones en el Número de Copia de ADN/genética , Elementos de Facilitación Genéticos/genética , HumanosRESUMEN
Highly conserved throughout evolution, the hedgehog (Hh) signalling pathway has been demonstrated to be involved in embryonic development, stem cell maintenance and tissue homeostasis in animals ranging from invertebrates to vertebrates. In the human body, a variety of cancer types are associated with the aberrantly activated Hh signalling pathway. Multiple studies have revealed suppressor of fused (Sufu) as a key negative regulator of this signalling pathway. In vertebrates, Sufu primarily functions as a tumor suppressor factor by interacting with and inhibiting glioma-associated oncogene homologues (GLIs), which are the terminal transcription factors of the Hh signalling pathway and belong to the Kruppel family of zinc finger proteins; by contrast, the regulation of Sufu itself remains relatively unclear. In the present review article, we focus on the effects of Sufu on the Hh signalling pathway in tumourigenesis and the molecular mechanisms underlying the regulation of GLI by Sufu. In addition, the factors modulating the activity of Sufu at post-transcriptional levels are also discussed.
RESUMEN
Somatic mutations of ERBB2 and ERBB3 (which encode HER2 and HER3, respectively) are found in a wide range of cancers. Preclinical modelling suggests that a subset of these mutations lead to constitutive HER2 activation, but most remain biologically uncharacterized. Here we define the biological and therapeutic importance of known oncogenic HER2 and HER3 mutations and variants of unknown biological importance by conducting a multi-histology, genomically selected, 'basket' trial using the pan-HER kinase inhibitor neratinib (SUMMIT; clinicaltrials.gov identifier NCT01953926). Efficacy in HER2-mutant cancers varied as a function of both tumour type and mutant allele to a degree not predicted by preclinical models, with the greatest activity seen in breast, cervical and biliary cancers and with tumours that contain kinase domain missense mutations. This study demonstrates how a molecularly driven clinical trial can be used to refine our biological understanding of both characterized and new genomic alterations with potential broad applicability for advancing the paradigm of genome-driven oncology.
Asunto(s)
Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Quinolinas/farmacología , Quinolinas/uso terapéutico , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-3/antagonistas & inhibidores , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Mutación Missense , Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinolinas/efectos adversos , Receptor ErbB-2/química , Receptor ErbB-2/genética , Receptor ErbB-3/química , Receptor ErbB-3/genética , Resultado del TratamientoRESUMEN
Molecular alterations involving the PI3K/AKT/mTOR pathway (including mutation, copy number, protein, or RNA) were examined across 11,219 human cancers representing 32 major types. Within specific mutated genes, frequency, mutation hotspot residues, in silico predictions, and functional assays were all informative in distinguishing the subset of genetic variants more likely to have functional relevance. Multiple oncogenic pathways including PI3K/AKT/mTOR converged on similar sets of downstream transcriptional targets. In addition to mutation, structural variations and partial copy losses involving PTEN and STK11 showed evidence for having functional relevance. A substantial fraction of cancers showed high mTOR pathway activity without an associated canonical genetic or genomic alteration, including cancers harboring IDH1 or VHL mutations, suggesting multiple mechanisms for pathway activation.
Asunto(s)
Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteogenómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Humanos , Mutación , Neoplasias/metabolismo , Transducción de Señal , Análisis de SupervivenciaRESUMEN
Purpose: Ewing Sarcoma (ES) and Desmoplastic Small Round Cell Tumors (DSRCT) are aggressive sarcomas molecularly characterized by EWSR1 gene fusions. As pathognomonic genomic events in these respective tumor types, EWSR1 fusions represent robust potential biomarkers for disease monitoring. Patients and Methods: To investigate the feasibility of identifying EWSR1 fusions in plasma derived cell-free DNA (cfDNA) from ES and DSRCT patients, we evaluated two complementary approaches in samples from 17 patients with radiographic evidence of disease. The first approach involved identification of patient-specific genomic EWSR1 fusion breakpoints in formalin-fixed, paraffin-embedded tumor DNA using a broad, hybridization capture-based next generation sequencing (NGS) panel, followed by design of patient-specific droplet digital PCR (ddPCR) assays for plasma cfDNA interrogation . The second approach employed a disease-tailored targeted hybridization capture-based NGS panel applied directly to cfDNA which included EWSR1 as well as several other genes with potential prognostic utility. Results: EWSR1 fusions were identified in 11/11 (100%) ES and 5/6 (83%) DSRCT samples by ddPCR, while 10/11 (91%) and 4/6 (67%) were identified by NGS. The ddPCR approach had higher sensitivity, ranging between 0.009-0.018% sensitivity. However, the hybrid capture-based NGS assay identified the precise fusion breakpoints in the majority of cfDNA samples, as well as mutations in TP53 and STAG2, two other recurrent, clinically significant alterations in ES, all without prior knowledge of the tumor sequencing results. Conclusion: These results provide a compelling rationale for an integrated approach utilizing both NGS and ddPCR for plasma cfDNA-based biomarker evaluations in prospective cooperative group studies.
RESUMEN
PURPOSE: Cancer spread to the central nervous system (CNS) often is diagnosed late and is unresponsive to therapy. Mechanisms of tumor dissemination and evolution within the CNS are largely unknown because of limited access to tumor tissue. MATERIALS AND METHODS: We sequenced 341 cancer-associated genes in cell-free DNA from cerebrospinal fluid (CSF) obtained through routine lumbar puncture in 53 patients with suspected or known CNS involvement by cancer. RESULTS: We detected high-confidence somatic alterations in 63% (20 of 32) of patients with CNS metastases of solid tumors, 50% (six of 12) of patients with primary brain tumors, and 0% (zero of nine) of patients without CNS involvement by cancer. Several patients with tumor progression in the CNS during therapy with inhibitors of oncogenic kinases harbored mutations in the kinase target or kinase bypass pathways. In patients with glioma, the most common malignant primary brain tumor in adults, examination of cell-free DNA uncovered patterns of tumor evolution, including temozolomide-associated mutations. CONCLUSION: The study shows that CSF harbors clinically relevant genomic alterations in patients with CNS cancers and should be considered for liquid biopsies to monitor tumor evolution in the CNS.
Asunto(s)
Neoplasias Encefálicas/líquido cefalorraquídeo , ADN de Neoplasias/líquido cefalorraquídeo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Adulto , Anciano , Neoplasias Encefálicas/genética , Sistema Libre de Células , Femenino , Humanos , Masculino , Persona de Mediana Edad , MutaciónRESUMEN
Cell-free circulating tumour DNA (ctDNA) in plasma has been shown to be informative of the genomic alterations present in tumours and has been used to monitor tumour progression and response to treatments. However, patients with brain tumours do not present with or present with low amounts of ctDNA in plasma precluding the genomic characterization of brain cancer through plasma ctDNA. Here we show that ctDNA derived from central nervous system tumours is more abundantly present in the cerebrospinal fluid (CSF) than in plasma. Massively parallel sequencing of CSF ctDNA more comprehensively characterizes the genomic alterations of brain tumours than plasma, allowing the identification of actionable brain tumour somatic mutations. We show that CSF ctDNA levels longitudinally fluctuate in time and follow the changes in brain tumour burden providing biomarkers to monitor brain malignancies. Moreover, CSF ctDNA is shown to facilitate and complement the diagnosis of leptomeningeal carcinomatosis.
Asunto(s)
Neoplasias Encefálicas/genética , ADN de Neoplasias/sangre , ADN de Neoplasias/líquido cefalorraquídeo , Genómica , Neoplasias Meníngeas/genética , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Glioblastoma/sangre , Glioblastoma/líquido cefalorraquídeo , Glioblastoma/genética , Humanos , Neoplasias Pulmonares/patología , Meduloblastoma/sangre , Meduloblastoma/líquido cefalorraquídeo , Meduloblastoma/genética , Neoplasias Meníngeas/sangre , Neoplasias Meníngeas/líquido cefalorraquídeoRESUMEN
As a phosphatase, SHP-2 has been identified to be involved in regulating several cell functions, including growth, division, adhesion and motility. Therefore, SHP2 may affect the response of glioma to radiotherapy, such as via enhancing angiogenesis. The present study aimed to investigate the function of SHP2, a protein tyrosine phosphatase, in the radiosensitivity of glioma. U251, U87 and SHG44 glioma cell lines were transfected with small interfering (si)RNA against SHP2 and cell proliferation was assessed using a cell counting kit 8 assay, cell apoptosis was assessed by fluorescenceactivated cell sorting and immunoblotting, cell invasion was determined by an invasion assay, and the vasculogenic mimicry capacity was assessed by a tube formation assay. SHP2 siRNA transfection reduced the proliferation and increased apoptosis in the glioma cell lines. Downregulation of SHP2 suppressed glioma cell invasion and vasculogenic mimicry. These results demonstrated that no significant difference was observed between glioma tissues and normal brain tissues, however, silencing of SHP2 inhibited cell proliferation, invasion and vasculogenic mimicry in the glioma cell lines. SHP2 may be a novel therapeutic target for glioma.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Encéfalo/patología , Glioma/genética , Glioma/terapia , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , ARN Interferente Pequeño/uso terapéutico , Adolescente , Adulto , Anciano , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/radioterapia , Línea Celular Tumoral , Femenino , Glioma/irrigación sanguínea , Glioma/radioterapia , Humanos , Masculino , Persona de Mediana Edad , ARN Interferente Pequeño/genética , Tratamiento con ARN de Interferencia , Transfección , Adulto JovenRESUMEN
Cancers are composed of populations of cells with distinct molecular and phenotypic features, a phenomenon termed intratumor heterogeneity (ITH). ITH in lung cancers has not been well studied. We applied multiregion whole-exome sequencing (WES) on 11 localized lung adenocarcinomas. All tumors showed clear evidence of ITH. On average, 76% of all mutations and 20 out of 21 known cancer gene mutations were identified in all regions of individual tumors, which suggested that single-region sequencing may be adequate to identify the majority of known cancer gene mutations in localized lung adenocarcinomas. With a median follow-up of 21 months after surgery, three patients have relapsed, and all three patients had significantly larger fractions of subclonal mutations in their primary tumors than patients without relapse. These data indicate that a larger subclonal mutation fraction may be associated with increased likelihood of postsurgical relapse in patients with localized lung adenocarcinomas.
Asunto(s)
Adenocarcinoma/genética , Heterogeneidad Genética , Neoplasias Pulmonares/genética , Recurrencia Local de Neoplasia/genética , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Análisis Mutacional de ADN , Exoma/genética , Genes Relacionados con las Neoplasias , Humanos , Neoplasias Pulmonares/patología , Mutación , Recurrencia Local de Neoplasia/patologíaRESUMEN
Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twenty-five cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter- and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis.