Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nutrients ; 16(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38794681

RESUMEN

Recent interest in preventing the development of osteoporosis has focused on the regulation of redox homeostasis. However, the action of lycopene (LYC), a strong natural antioxidant compound, on osteoporotic bone loss remains largely unknown. Here, we show that oral administration of LYC to OVX rats for 12 weeks reduced body weight gain, improved lipid metabolism, and preserved bone quality. In addition, LYC treatment inhibited ROS overgeneration in serum and bone marrow in OVX rats, and in BMSCs upon H2O2 stimulation, leading to inhibiting adipogenesis and promoting osteogenesis during bone remodeling. At the molecular level, LYC improved bone quality via an increase in the expressions of FoxO1 and Runx2 and a decrease in the expressions of PPARγ and C/EBPα in OVX rats and BMSCs. Collectively, these findings suggest that LYC attenuates osteoporotic bone loss through promoting osteogenesis and inhibiting adipogenesis via regulation of the FoxO1/PPARγ pathway driven by oxidative stress, presenting a novel strategy for osteoporosis management.


Asunto(s)
Adipogénesis , Licopeno , Células Madre Mesenquimatosas , Osteogénesis , Ovariectomía , PPAR gamma , Ratas Sprague-Dawley , Transducción de Señal , Animales , Osteogénesis/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Licopeno/farmacología , PPAR gamma/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Femenino , Transducción de Señal/efectos de los fármacos , Ratas , Osteoporosis/prevención & control , Estrés Oxidativo/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo
2.
Bioorg Chem ; 147: 107362, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615474

RESUMEN

Excessive peroxynitrite (ONOO-) is closely related to the occurrence and progression of inflammation. Therefore, the development of an efficacious ONOO- activatable probe holds great potential for the early diagnosis of pathological inflammation, and the direct evaluation of the therapeutic efficacy of active protectants. In this work, a new ONOO--activated fluorescent probe (SZP) which greatly improved the specificity and sensitivity (LOD = 8.03 nM) with large Stokes shift (150 nm) through introducing two reaction triggers (diphenyl phosphinate moiety, CC unsaturated bond) was rationally designed for rapid detecting ONOO- (within 2 min). The excellent properties of probe SZP enable it to realize the fluorescence-guided diagnosis of inflammation. More importantly, probe SZP has also been utilized to assess the anti-inflammatory efficacy of traditional Chinese medicines (TCMs) active ingredients for the remediation of inflammation by monitoring ONOO- fluctuation for the first time.


Asunto(s)
Colorantes Fluorescentes , Inflamación , Ácido Peroxinitroso , Ácido Peroxinitroso/análisis , Ácido Peroxinitroso/antagonistas & inhibidores , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Inflamación/tratamiento farmacológico , Animales , Estructura Molecular , Ratones , Humanos , Células RAW 264.7 , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/síntesis química , Antiinflamatorios/uso terapéutico , Imagen Óptica , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/síntesis química , Masculino
3.
J Ethnopharmacol ; 321: 117488, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008277

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The emergence of antibiotic-resistant bacteria has rendered it more challenging to treat bacterial pneumonia. Traditional Chinese medicine (TCM) has superior efficacy in the treatment of pneumonia, and it has the unique advantage of antibacterial resistance against multi-drug resistant (MDR) bacteria, but the medication rule and pharmacological mechanism of its antibacterial activity are not clear. AIM OF THE STUDY: This study aims to reveal Chinese medication patterns in treating bacterial pneumonia to select bioactive constituents in core herbs, predict their pharmacological mechanisms and further explore their antibacterial ability against clinically isolated MDR Klebsiella pneumoniae (KP) and their antibacterial mechanisms. MATERIALS AND METHODS: The high-frequency medicinal herbs to treat lung diseases were first screened from Pharmacopoeia of the People's Republic of China (ChP.), and then bioactive compounds in core herbs and targets for compounds and disease were collected. Potential targets, signaling pathways, and drugs' core components were determined by constructing protein-protein interaction network, enrichment analysis and "component-target-pathway-disease" network were mapped by Cytoscape 3.8.2, and the potential therapeutic value of selected core components was verified by comparing the disease targets in the GEO database with the herbal component targets in the ITCM database. The clinically isolated KP were screened by drug sensitivity tests with meropenem (MEM), polymyxin E (PE), and tigecycline and biofilm-forming assay; broth microdilution, chessboard methods and biofilm morphology and permeability experiments were employed to determine the antibacterial, bactericidal and biofilm inhibition ability of selected bioactive constituents alone and in combination with antibiotics; The mechanism of bioactive components on quorum sensing (QS) genes LuxS and LuxR was predicted by molecular docking and tested by RT-PCR. RESULTS: The 13 core Chinese medicines were obtained by mining ChP., and 615 potential targets of core herbal medicine were screened, and the PI3K-Akt signaling pathway might play crucial roles in the therapeutic process. In-vitro experiments revealed that the selected core compounds, including forsythoside B, baicalin, baicalein, and forsythin, all have antibacterial activity, in which baicalein had the strongest ability and a synergistic effect in combination with MEM or PE. Their synergy exhibited a stronger effect on biofilms of MDR KP, inhibiting biofilm formation, disrupting formed biofilms, and removing the residual structures of dead bacteria. Baicalein was predicted to have stable binding capacity to LuxS and LuxR genes by molecular docking, and RT-PCR results verified that the combination of baicalein with MEM or PE was effective in inhibiting the expression of QS genes (LuxS and LuxR) and consequently suppressing biofilm formation. CONCLUSION: The core Chinese herbal medicine in the ChP. to treat lung diseases has a multi-component, multi-target, and multi-pathway synergy to improve bacterial pneumonia. Experimental studies have confirmed that the bioactive compound baicalein was able to combat MDR KP alone and synergistic with MEM or PE, inhibited and disrupted biofilms via regulating LuxS and LuxR genes, and further disturbed quorum sensing system to promote the therapeutic efficacy, which provides a new pathway and rationale for treating MDR KP-induced bacterial pneumonia.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedades Pulmonares , Neumonía Bacteriana , Humanos , Klebsiella pneumoniae , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Meropenem/farmacología , Transactivadores , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
4.
Chin J Integr Med ; 30(5): 421-432, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38153596

RESUMEN

OBJECTIVE: To investigate the main components and potential mechanism of Shuxuening Injection (SXNI) in the treatment of myocardial ischemia-reperfusion injury (MIRI) through network pharmacology and in vivo research. METHODS: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) and PharmMapper databases were used to extract and evaluate the effective components of Ginkgo biloba leaves, the main component of SXNI. The Online Mendelian Inheritance in Man (OMIM) and GeneCards databases were searched for disease targets and obtain the drug target and disease target intersections. The active ingredient-target network was built using Cytoscape 3.9.1 software. The STRING database, Metascape online platform, and R language were used to obtain the key targets and signaling pathways of the anti-MIRI effects of SXNI. In order to verify the therapeutic effect of different concentrations of SXNI on MIRI in rats, 60 rats were first divided into 5 groups according to random number table method: the sham operation group, the model group, SXNI low-dose (3.68 mg/kg), medium-dose (7.35 mg/kg), and high-dose (14.7 mg/kg) groups, with 12 rats in each group. Then, another 60 rats were randomly divided into 5 groups: the sham operation group, the model group, SXNI group (14.7 mg/kg), SXNI+LY294002 group, and LY294002 group, with 12 rats in each group. The drug was then administered intraperitoneally at body weight for 14 days. The main biological processes were validated using in vivo testing. Evans blue/triphenyltetrazolium chloride (TTC) double staining, hematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were used to investigate the efficacy and mechanism of SXNI in MIRI rats. RESULTS: Eleven core targets and 30 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected. Among these, the phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT) pathway was closely related to SXNI treatment of MIRI. In vivo experiments showed that SXNI reduced the myocardial infarction area in the model group, improved rat heart pathological damage, and reduced the cardiomyocyte apoptosis rate (all P<0.01). After SXNI treatment, the p-PI3K/PI3K and p-AKT/AKT ratios as well as B-cell lymphoma-2 (Bcl-2) protein expression in cardiomyocytes were increased, while the Bax and cleaved caspase 3 protein expression levels were decreased (all P<0.05). LY294002 partially reversed the protective effect of SXNI on MIRI. CONCLUSION: SXNI protects against MIRI by activating the PI3K/AKT signaling pathway.


Asunto(s)
Apoptosis , Medicamentos Herbarios Chinos , Daño por Reperfusión Miocárdica , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Animales , Medicamentos Herbarios Chinos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Apoptosis/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Inyecciones , Ratas
5.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5404-5409, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114134

RESUMEN

Accurate assessment of the risks associated with traditional Chinese medicine(TCM), such as the potential to induce serious cardiovascular adverse reactions including cardiac arrhythmias, is crucial. This article introduced the pharmacological evaluation strategies for cardiac safety and the progress in cardiac organ research, with a focus on discussing the application prospects of human induced pluripotent stem cells(hiPSCs) and organoids in assessing the risks of TCM-induced cardiac arrhythmias. Compared with traditional animal models, hiPSCs and organoid models provide better reference and predictive capabilities, allowing for more accurate simulation of human cardiac responses. Researchers have successfully generated various cardiac tissue models that mimic the structure and function of the heart to evaluate the effects of TCM on the heart. The hiPSCs model, by reprogramming adult cells into pluripotent stem cells and differentiating them into cardiac cells, enables the generation of personalized cardiac tissue, which better reflects individual differences and drug responses. This provides guidance for the assessment of TCM cardiac toxicity risks. By combining organoid model with cardiac safety pharmacology strategies such as electrocardiogram monitoring and ion channel function assessment, the impact of TCM on the heart can be comprehensively evaluated. In addition, the application of the Comprehensive in Vitro Proarrhythmia Assay(CiPA) approach improves the accuracy of evaluation. Applying the CiPA approach to TCM research reveals potential risks and provides a scientific basis for the clinical application and industrial development of TCM. In conclusion, organoid model and cardiac safety pharmacology evaluation strategies provide important tools for assessing the cardiac toxicity risks of TCM. The combination of hiPSCs model, comprehensive assessment methods, and the CiPA strategy enables an accurate assessment of the risks of TCM-induced cardiac arrhythmias, thus providing a scientific basis for the safe use and international recognition of TCM in clinical practice. This contributes to ensuring the safety and efficacy of TCM and promoting its clinical application and global acceptance.


Asunto(s)
Medicamentos Herbarios Chinos , Células Madre Pluripotentes Inducidas , Animales , Humanos , Medicina Tradicional China/efectos adversos , Cardiotoxicidad , Arritmias Cardíacas/inducido químicamente , Miocitos Cardíacos , Organoides , Medicamentos Herbarios Chinos/efectos adversos
6.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5915-5931, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114188

RESUMEN

This study used UPLC-TQ-MS technology to replicate a Henoch-Schonlein purpura(HSP) model in rats by administering warm drugs by gavage and injecting ovalbumin with Freund's complete adjuvant emulsion. The distribution differences and characteristics of eight major components(ferulic acid, caffeic acid, neochlorogenic acid, cryptochlorogenic acid, benzoyl oxypaeoniflorin, tracheloside, loganin, and paeoniflorin) in rat liver, lung, heart, spleen, and kidney tissues were determined after oral administration of the Liangxue Tuizi Mixture at a dose of 42 g·kg~(-1) in both normal physiological and HSP states at 0.5, 1, 2, 6, and 12 hours. The results showed that the distribution patterns of the eight components of Liangxue Tuizi Mixture in the tissues of normal and HSP model rats were different. The main component, paeoniflorin, in Moutan Cortex and Paeoniae Radix Alba had higher content in all tissues. The eight components were predominantly distributed in the liver, lung, and kidney tissues, followed by spleen and heart tissues.


Asunto(s)
Vasculitis por IgA , Ratas , Animales , Vasculitis por IgA/tratamiento farmacológico , Monoterpenos , Administración Oral , Cromatografía Líquida con Espectrometría de Masas
7.
Front Chem ; 11: 1259569, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867998

RESUMEN

Drug-induced liver injury (DILI) is one of the most common causes of a drug being withdrawn, and identifying the culprit drugs and the host factors at risk of causing DILI has become a current challenge. Recent studies have found that immune status plays a considerable role in the development of DILI. In this study, DILI-related differentially expressed genes mediated by immunoinflammatory cytokines were obtained from the Gene Expression Omnibus (GEO) database to predict the occurrence of DILI (named the DILI predictive gene set, DILI_PGS), and the predictability of the DILI_PGS was verified using the Connectivity Map (CMap) and LiverTox platforms. The results obtained DILI_PGS from the GEO database could predict 81.25% of liver injury drugs. In addition, the Coexpedia platform was used to predict the DILI_PGS-related characteristics of common host diseases and found that the DILI_PGS mainly involved immune-related diseases and tumor-related diseases. Then, animal models of immune stress (IS) and immunosuppressive (IP) were selected to simulate the immune status of the above diseases. Meanwhile, psoralen, a main component derived from Psoralea corylifolia Linn. with definite hepatotoxicity, was selected as an experimental drug with highly similar molecular fingerprints to three idiosyncratic hepatotoxic drugs (nefazodone, trovafloxacin, and nimesulide) from the same DILI_PGS dataset. The animal experiment results found a single administration of psoralen could significantly induce liver injury in IS mice, while there was no obvious liver function change in IP mice by repeatedly administering the same dose of psoralen, and the potential mechanism of psoralen-induced liver injury in IS mice may be related to regulating the expression of the TNF-related pathway. In conclusion, this study constructed the DILI_PGS with high accuracy to predict the occurrence of DILI and preliminarily identified the characteristics of host factors inducing DILI.

8.
Front Chem ; 11: 1250043, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744058

RESUMEN

Quercetin (QR) is a natural flavonol compound widely distributed in the plant kingdom with extensive pharmacological effects. To find the potential clinical indications of QR, 156 differentially expressed genes (DEGs) regulated by QR were obtained from the Gene Expression Omnibus database, and new potential pharmacological effects and clinical indications of QR were repurposed by integrating compounds with similar gene perturbation signatures and associated-disease signatures to QR based on the Connectivity Map and Coexpedia platforms. The results suggested QR has mainly potential therapeutic effects on multiple sclerosis (MS), osteoarthritis, type 2 diabetes mellitus, and acute leukemia. Then, MS was selected for subsequent animal experiments as a representative potential indication, and it found that QR significantly delays the onset time of classical MS model animal mice and ameliorates the inflammatory infiltration and demyelination in the central nervous system. Combined with network pharmacology technology, the therapeutic mechanism of QR on MS was further demonstrated to be related to the inhibition of the expression of inflammatory cytokines (TNF-α, IL-6, IL-1ß, IFN-γ, IL-17A, and IL-2) related to TNF-α/TNFR1 signaling pathway. In conclusion, this study expanded the clinical indications of QR and preliminarily confirmed the therapeutic effect and potential mechanism of QR on MS.

9.
Chin Med ; 18(1): 102, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592331

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Psoralea corylifolia Linn. (BGZ) is a commonly used traditional Chinese medicine (TCM) for the treatment of kidney-yang deficiency syndrome (Yangsyn) with good curative effect and security. However, BGZ was also reported to induce liver injury in recent years. According to TCM theory, taking BGZ may induce a series of adverse reactions in patients with kidney-yin deficiency syndrome (Yinsyn), which suggests that BGZ-induced liver damage may be related to its unreasonable clinical use. AIM OF THE STUDY: Liver injury caused by TCM is a rare but potentially serious adverse drug reaction, and the identification of predisposed individuals for drug-induced liver injury (DILI) remains challenging. The study aimed to investigate the differential responses to BGZ in Yangsyn and Yinsyn rat models and identify the corresponding characteristic biomarkers. MATERIALS AND METHODS: The corresponding animal models of Yangsyn and Yinsyn were induced by hydrocortisone and thyroxine + reserpine respectively. Body weight, organ index, serum biochemistry, and Hematoxylin and Eosin (HE) staining were used to evaluate the liver toxicity effect of BGZ on rats with Yangsyn and Yinsyn. Transcriptomics and metabonomics were used to screen the representative biomarkers (including metabolites and differentially expressed genes (DEGs)) changed by BGZ in Yangsyn and Yinsyn rats, respectively. RESULTS: The level changes of liver organ index, alanine aminotransferase (ALT), and aspartate aminotransferase (AST), suggested that BGZ has liver-protective and liver-damaging effects on Yangsyn and Yinsyn rats, respectively, and the results also were confirmed by the pathological changes of liver tissue. The results showed that 102 DEGs and 27 metabolites were significantly regulated related to BGZ's protective effect on Yangsyn, which is mainly associated with the glycerophospholipid metabolism, arachidonic acid metabolism, pantothenate, and coenzyme A (CoA) biosynthesis pathways. While 28 DEGs and 31 metabolites, related to the pathway of pantothenate and CoA biosynthesis, were significantly regulated for the BGZ-induced liver injury in Yinsyn. Furthermore, 4 DEGs (aldehyde dehydrogenase 1 family member B1 (Aldh1b1), solute carrier family 25 member 25 (Slc25a25), Pim-3 proto-oncogene, serine/threonine kinase (Pim3), out at first homolog (Oaf)) and 4 metabolites (phosphatidate, phosphatidylcholine, N-Acetylleucine, biliverdin) in the Yangsyn group and 1 DEG [galectin 5 (Lgals5)] and 1 metabolite (5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate) in Yinsyn group were significantly correlated to the ALT and AST levels of BGZ treated and untreated groups (receiver operating characteristic (ROC) ≥ 0.9). CONCLUSIONS: Yinsyn and Yangsyn are the predisposed syndromes for BGZ to exert liver damage and liver protection respectively, which are mainly related to the regulation of amino acid metabolism, lipid metabolism, energy metabolism, and metabolism of cofactors and vitamins. The results further suggest that attention should be paid to the selection of predisposed populations when using drugs related to the regulation of energy metabolism, and the Yinsyn/Yangsyn animal models based on the theory of TCM syndromes may be a feasible method for identifying the susceptible population to receive TCM.

10.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3327-3344, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37382017

RESUMEN

Ultra-performance liquid chromatography-quadrupole time of fight/mass spectrometry(UPLC-Q-TOF-MS) and UNIFI were employed to rapidly determine the content of the components in Liangxue Tuizi Mixture. The targets of the active components and Henoch-Schönlein purpura(HSP) were obtained from SwissTargetPrediction, Online Mendelian Inheritance in Man(OMIM), and GeneCards. A "component-target-disease" network and a protein-protein interaction(PPI) network were constructed. Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed for the targets by Omishare. The interactions between the potential active components and the core targets were verified by molecular docking. Furthermore, rats were randomly assigned into a normal group, a model group, and low-, medium-, and high-dose Liangxue Tuizi Mixture groups. Non-targeted metabolomics was employed to screen the differential metabolites in the serum, analyze possible metabolic pathways, and construct the "component-target-differential metabolite" network. A total of 45 components of Liangxue Tuizi Mixture were identified, and 145 potential targets for the treatment of HSP were predicted. The main signaling pathways enriched included resistance to epidermal growth factor receptor tyrosine kinase inhibitors, phosphatidylinositol 3-kinase/protein kinase B(PI3K-AKT), and T cell receptor. The results of molecular docking showed that the active components in Liangxue Tuizi Mixture had strong binding ability with the key target proteins. A total of 13 differential metabolites in the serum were screened out, which shared 27 common targets with active components. The progression of HSP was related to metabolic abnormalities of glycerophospholipid and sphingolipid. The results indicate that the components in Liangxue Tuizi Mixture mainly treats HSP by regulating inflammation and immunity, providing a scientific basis for rational drug use in clinical practice.


Asunto(s)
Vasculitis por IgA , Animales , Ratas , Vasculitis por IgA/tratamiento farmacológico , Farmacología en Red , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Metabolómica
11.
Front Pharmacol ; 13: 995796, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545315

RESUMEN

Background: Renshen-Fuzi herb pair (RS-FZ) is often used in the clinical treatment of heart failure (HF) and has a remarkable therapeutic effect. However, the mechanism of RS-FZ for treating HF remains unclear. In our study, we explored the mechanism of RS-FZ for treating HF. Methods: Evaluation of RS-FZ efficacy by cardiovascular pharmacology. Moreover, Global metabolomics profiling of the serum was detected by UPLC-QTOF/MS. Multivariate statistics analyzed the specific serum metabolites and corresponding metabolic pathways. Combining serum metabolomics with network pharmacology, animal experiments screened and validated the critical targets of RS-FZ intervention in HF. Results: RS-FZ significantly ameliorated myocardial fibrosis, enhanced cardiac function, and reduced the serum HF marker (brain natriuretic peptide) level in rats with HF. Through topological analysis of the "Metabolite-Target-Component" interaction network, we found that 79 compounds of RS-FZ directly regulated the downstream specific serum metabolites by acting on four critical target proteins (CYP2D6, EPHX2, MAOB, and ENPP2). The immunohistochemistry results showed that RS-FZ observably improved the expression of CYP2D6 and ENPP2 proteins while decreasing the expression of EPHX2 and MAOB proteins dramatically. Conclusion: The integrated cardiovascular pharmacological assessment with serum metabolomics revealed that RS-FZ plays a crucial role in the treatment of HF by intervening in CYP2D6, EPHX2, MAOB, and ENPP2 target proteins. It provides a theoretical basis for RS-FZ for treating HF.

12.
Food Funct ; 13(24): 13064, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36454540

RESUMEN

Correction for 'Clinical correlation between serum cytokines and the susceptibility to Polygonum multiflorum-induced liver injury and an experimental study' by Le Zhang et al., Food Funct., 2022, 13, 825-833, https://doi.org/10.1039/D1FO03489H.

13.
Front Pharmacol ; 13: 813073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304164

RESUMEN

Traditional medicines have greatly contributed to people's health worldwide. However, in recent years, the frequent occurrence of herb-induced liver injury (HILI) has raised public concerns regarding the safety of herbs. HILI not only severely impacts public health, thus increasing its medical burden, but also consumes medical resources. However, the pharmacoepidemiology and risk factors of HILI are still unclear due to the complexity of herbs (medication theory, drug composition, dual properties of drugs and food, etc.). China is the country with the most extensive use of herbs and cases of HILI worldwide. The safety profile of herbs (especially with respect to HILI) has also affected the use of herbs internationally. Therefore, this review focuses on the epidemic situation of HILI in mainland China to compile its characteristics, while focusing on the three main aspects of patients, drugs, and unreasonable prescriptions to explore the potential risk factors. Our objective was to provide a reference for HILI pharmacovigilance and risk prevention and control and contribute to Chinese knowledge of the realisation of the "Medication without Harm" global safe medication strategic goal of the World Health Organization.

14.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2251-2256, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35531742

RESUMEN

The present study analyzed the potential biomarkers of chronic obstructive pulmonary disease(COPD) with lung-Qi deficiency syndrome by non-targeted metabolomics and explored the biological basis of this syndrome. Blood samples of 96 COPD patients with lung-Qi deficiency syndrome(COPD with lung-Qi deficiency syndrome group) and 106 healthy people(healthy control group) were collected, and the metabolic profiles of both groups were analyzed by ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Multivariate statistical analysis and differential metabolite screening were carried out by using Progenesis QI and Simca-P. Metabolic pathways were constructed through the MetaboAnalyst. Seven potential biomarkers, such as L-cystathionine, protoporphyrinogen Ⅸ, and citalopram aldehyde, were identified. Compared with the results in the healthy control group, the content of citalopram aldehyde, N1-methyl-2-pyridone-5-carboxamide, and 11ß,17ß-dihydroxy-4-androsten-3-one was significantly up-regulated, while that of the other four compounds such as L-cystathionine, dihydrotestosterone, protoporphyrinogen Ⅸ, and D-urobilinogen was down-regulated. These potential biomarkers involved six metabolic pathways, including cysteine and methionine metabolism, porphyrin and chlorophyll metabolism, drug metabolism of cytochrome P450, steroid hormone biosynthesis, glycine, serine, and threonine metabolism, and nicotinate and nicotinamide meta-bolism. This study is expected to provide a certain scientific basis for the research on traditional Chinese medicine syndrome of COPD with lung-Qi deficiency syndrome from the molecular biology level.


Asunto(s)
Cistationina , Enfermedad Pulmonar Obstructiva Crónica , Aldehídos , Biomarcadores , Cromatografía Líquida de Alta Presión , Citalopram , Humanos , Pulmón , Metabolómica/métodos
15.
Zhongguo Zhong Yao Za Zhi ; 47(1): 176-187, 2022 Jan.
Artículo en Chino | MEDLINE | ID: mdl-35178925

RESUMEN

This study was designed to explore the alleviating effect and mechanism of Glycyrrhizae Radix et Rhizoma against Psora-leae Fructus-induced liver injury based on network pharmacology and cell experiments. The active components of Glycyrrhizae Radix et Rhizoma and Psoraleae Fructus were first retrieved from the Encyclopedia of Traditional Chinese Medicine(ETCM), Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), Comparative Toxicogenomics Database(CTD), and literature and further screened by SwissADME. The obtained 25 potential toxic components of Psoraleae Fructus and 29 flavonoids in Glycyrrhizae Radix et Rhizoma were input into the SwissTargetPrediction for target predication. A total of 818 targets related to liver injury were screened out based on GeneCards and MalaCards, and 91 common targets of Psoraleae Fructus, Glycyrrhizae Radix et Rhizoma, and liver injury were obtained from Venny. STRING was applied for constructing the PPI network, and Metascape for analyzing the biological processes and signaling pathways that common targets participated in. Cytoscape was used to construct the component-target-disease network and component-target-pathway network for Glycyrrhizae Radix et Rhizoma against Psoraleae Fructus-induced liver injury. The predicted core targets were proto-oncogene tyrosine-protein kinase(SRC), phosphatidylinositol 4,5-bisphosphate 3-kinase subunit alpha(PIK3 CA), RAC-alpha serine/threonine-protein kinase(AKT1), etc, with PI3 K-AKT signaling pathway, MAPK signaling pathway, apoptosis, Toll-like receptor signaling pathway, and NF-κB signaling pathway mainly involved. Following the scree-ning of the main toxic and pharmacodynamic components, the pharmacodynamic effects were investigated by cell experiments. The results showed that licochalcone A was mainly responsible for alleviating coryfolin-induced liver injury, licochalcone B for coryfolin-and psoralidin-induced liver injury, and echinatin for corylifolinin-and bakuchiol-induced liver injury. The preliminary revealing of the alleviating effect of Glycyrrhizae Radix et Rhizoma on Psoraleae Fructus-induced liver injury and the prediction of related mechanisms will provide reference for further mechanism research and reasonable clinical compatibility.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/farmacología , Glycyrrhiza , Humanos , Medicina Tradicional China , Farmacología en Red
16.
Food Funct ; 13(2): 825-833, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34985089

RESUMEN

Polygonum multiflorum (PM), a popular functional food, and a herbal and dietary supplement, is widely used as a tonic in China and East Asia. In recent years, it has attracted great concern for its ability to cause idiosyncratic drug-induced liver injury (IDILI). However, identifying individuals susceptible to IDILI remains challenging. This is a prospective study. For 6 patients whose serum alanine aminotransferase (ALT) levels after consuming PM were abnormally elevated (susceptible group), 15 patients with normal levels of liver injury markers were matched (tolerant group) based on similar baseline characteristics. ProcartaPlex immunoassays were adopted to quantitatively detect 33 serum cytokines in the two groups of patients before consuming PM, to characterize the cytokine profile and screen differential cytokines. Subsequently, the susceptibility of a potential biomarker to regulate PM-induced liver injury was validated in animal models. There were significant differences in the cytokine profiles between the susceptible and tolerant groups, wherein the susceptible patients showed immune perturbation characterized by high expression of multiple inflammatory cytokines, especially the proinflammatory cytokine TNF-α (P = 0.006). Among them, the cytokine TNF-α had the strongest correlation with ALT, where the correlation coefficient was greater than 0.6, and the area under the receiver operating characteristic curve was more than 0.8. Animal experiments revealed that both PM water extract and its susceptibility component of liver injury, cis-stilbene glucoside, could cause liver injury in the mice pre-stimulated using TNF-α. Conversely, administration of the same dose of drugs on control mice did not show any hepatotoxicity. In conclusion, immune perturbation mainly mediated by TNF-α may regulate the susceptibility to PM-induced liver injury. This provides a new perspective for the study of susceptibility to IDILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Citocinas/metabolismo , Fallopia multiflora/química , Extractos Vegetales/toxicidad , Adulto , Animales , Citocinas/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hígado/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/química , Factor de Necrosis Tumoral alfa/farmacología
17.
Front Cell Infect Microbiol ; 12: 1095053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36710971

RESUMEN

Background: Increasing evidence suggests that gut dysbiosis can directly or indirectly affect the immune system through the brain-gut axis and play a role in the occurrence and development of Multiple sclerosis (MS). Oxymatrine (OMAT) has been shown to ameliorate the symptoms of MS in the classical experimental autoimmune encephalomyelitis (EAE) model of MS, but whether its therapeutic role is through the correction of gut dysbiosis, is unclear. Methods: The effects of OMAT on intestinal flora and short-chain fatty acids in EAE model mice were evaluated by 16S rRNA sequencing and GC-MS/MS, respectively, and the function change of the blood-brain barrier and intestinal epithelial barrier was further tested by immunohistochemical staining, Evans Blue leakage detection, and RT-qPCR. Results: The alpha and beta diversity in the feces of EAE mice were significantly different from that of the control group but recovered substantially after OMAT treatment. Besides, the OMAT treatment significantly affected the gut functional profiling and the abundance of genes associated with energy metabolism, amino acid metabolism, the immune system, infectious diseases, and the nervous system. OMAT also decreased the levels of isobutyric acid and isovaleric acid in EAE mice, which are significantly related to the abundance of certain gut microbes and were consistent with the reduced expression of TNF-a, IL-6, and IL-1b. Furthermore, OMAT treatment significantly increased the expression of ZO-1 and occludin in the brains and colons of EAE mice and decreased blood-brain barrier permeability. Conclusion: OMAT may alleviate the clinical and pathological symptoms of MS by correcting dysbiosis, restoring gut ecological and functional microenvironment, and inhibiting immune cell-mediated inflammation to remodel the brain-gut axis.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Microbioma Gastrointestinal , Esclerosis Múltiple , Animales , Ratones , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Barrera Hematoencefálica/patología , Microbioma Gastrointestinal/fisiología , Disbiosis/tratamiento farmacológico , ARN Ribosómico 16S/genética , Espectrometría de Masas en Tándem , Sulfadiazina/farmacología , Sulfadiazina/uso terapéutico , Homeostasis , Ratones Endogámicos C57BL
18.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6763-6779, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36604926

RESUMEN

UPLC-TQ/MS was employed to determine the content of 8 main components(psoralen, isopsoralen, psoralenoside, isopsoralenoside, bavachin, psoralidin, corylin, and neobavaisoflavone) in tissues of normal and lipopolysaccharide(LPS)-induced model rats 0.5, 1, 2, 6, and 12 h after intragastric administration of 3.6 g·kg~(-1) ethanol extract of Psoraleae Fructus. The distribution characteristics of the 8 main components in the different tissues(liver, kidney, spleen, heart, and lung) were studied and compared. The results showed that the distribution behaviors of the components varied among different tissues. At different time points, the components presented wide and uneven distribution in the body. Liver and kidney had higher content of the components, followed by spleen, heart, and lung. In both normal and LPS-induced model rats, the content of the 8 main components was higher in liver and kidney and varied significantly among different tissues. The content of psoralen in the tissues of LPS-induced model rat was significantly higher than that of the normal group 12 h after administration. The reason may be that the modeling slowed down the absorption and distribution of psoralen. The LPS-induced model rats had higher content of psoralenoside and isopsoralenoside in the liver tissue than the normal rats, which indicated that the modeling increased the absorption and distribution of psoralenoside and isopsoralenoside in the liver tissue. Further, it is hypothesized that psoralenoside and isopsoralenoside may be toxic substances of Psoraleae Fructus-induced liver injury.


Asunto(s)
Furocumarinas , Psoralea , Ratas , Animales , Lipopolisacáridos , Etanol , Extractos Vegetales , Ficusina
19.
Ann Palliat Med ; 10(11): 11415-11429, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34872267

RESUMEN

BACKGROUND: The etiology and pathogenesis of cough are complex. As a Chinese patent medicine that has been on the market, ErtongKe (ETK) granules have a good effect in treating acute and chronic cough in children. The purpose of this research was to determine the bioactive components and possible action mechanisms of ETK in the treatment of cough using an integrated network pharmacology method. METHODS: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Swiss target prediction databases were used to screen the potential components and associated targets of ETK. The Genecards database was then used to gather targets interacting with cough. An analysis of the signaling pathways associated with ETK for cough treatment was carried out using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analysis methods. Cytoscape 3.8.1 was used to design the protein-protein interaction (PPI) and compound-target-pathway networks. Finally, the important genes and active components of ETK were confirmed using Auto Dock vina and Discovery studio software. RESULTS: Total 242 active components of ETK were screened, 1,173 potential targets related to the ingredients and 4,400 targets related to cough were collected separately. Moreover, 600 candidate targets and 39 signaling pathways were determined. We also screened out the following core components, including tuberostemonone, quercetin, kaempferol, praeruptorin E, stigmasterol, oroxylin A, and other potentially active ingredients. At the same time, 8 core targets, including JUN, PIK3CA, PIK3R1, MAPK14, EGFR, SRC, AKT1, and MAPK1, and 20 key pathways, including the cAMP signaling pathway, calcium signaling pathway, and PI3K-Akt signaling pathway among others, were also selected. All the 8 core targets were verified by molecular docking. CONCLUSIONS: This research established that ETK exerts anti-cough activity by modulating several targets and pathways through multiple components. Additionally, the pooled results shed light on ETK compounds being investigated as potential antitussives.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Niño , Tos/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Tecnología
20.
Gene ; 805: 145907, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34411648

RESUMEN

The gene polymorphisms of ABCB1, EPHX1, and SCN1A were found to influence carbamazepine (CBZ) metabolism and resistance in epilepsy patients, but the relevance remains controversial. To reveal the relationships among the gene polymorphisms of ABCB1, EPHX1, SCN1A and the metabolism and resistance of CBZ, the databases of PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure, Chinese Science and Technique Journals, China Biology medicine disc and Wan Fang were retrieved for suitable studies up to April 2021. 18 studies containing 3293 epilepsy patients were included. The result revealed the gene polymorphism of ABCB1 c.3435C > T is significantly associated with altered concentration-dose ratios of CBZ (CDRCBZ) (CC vs. CT, OR = 0.25 (95% CI: 0.08-0.42), P = 0.004), and EPHX c.416A > G gene polymorphism may also significantly adjusted the concentration-dose ratios of carbamazepine-10, 11-trans dihydrodiol (CDRCBZD) (AA vs. GG, OR = 0.48 (95% CI: 0.01-0.96), P = 0.045; AG vs. GG, OR = 0.68 (95% CI: 0.16-1.20), P = 0.010, respectively) and the ratio of CBZD:carbamazepine-10,11-epoxide (CBZE) (CDRCBZD:CDRCBZE) (AG vs GG, OR = 0.83 (95% CI: 0.31-1.36), P = 0.002). Furthermore, ABCB1 c.3435C > T polymorphism was also observed to be significantly influenced CBZ resistance (CC vs TT, OR = 1.78 (95% CI: 1.17-2.72), P = 0.008; CT vs TT, OR = 1.60 (95% CI: 1.12-2.30), P = 0.01; CC + CT vs TT, OR = 1.61 (95% CI: 1.15-2.26), P = 0.006, respectively). Therefore, CBZ metabolism and resistance in patients with epilepsy may be adjusted by the gene polymorphisms of ABCB1 c.3435C > T and EPHX1 c.416A > G which provides the further scientific basis for clinical individualized therapy of epilepsy. However, larger sample size studies are still needed to provide further conclusive evidence.


Asunto(s)
Carbamazepina/metabolismo , Epóxido Hidrolasas/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adulto , Anticonvulsivantes/farmacología , Carbamazepina/sangre , Carbamazepina/farmacología , China , Bases de Datos Genéticas , Epilepsia Refractaria/genética , Epilepsia Refractaria/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Epóxido Hidrolasas/metabolismo , Femenino , Genotipo , Humanos , Masculino , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...