Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 14: 1413273, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962272

RESUMEN

Background: Angiogenesis plays a pivotal role in colorectal cancer (CRC), yet its underlying mechanisms demand further exploration. This study aimed to elucidate the significance of angiogenesis-related genes (ARGs) in CRC through comprehensive multi-omics analysis. Methods: CRC patients were categorized according to ARGs expression to form angiogenesis-related clusters (ARCs). We investigated the correlation between ARCs and patient survival, clinical features, consensus molecular subtypes (CMS), cancer stem cell (CSC) index, tumor microenvironment (TME), gene mutations, and response to immunotherapy. Utilizing three machine learning algorithms (LASSO, Xgboost, and Decision Tree), we screen key ARGs associated with ARCs, further validated in independent cohorts. A prognostic signature based on key ARGs was developed and analyzed at the scRNA-seq level. Validation of gene expression in external cohorts, clinical tissues, and blood samples was conducted via RT-PCR assay. Results: Two distinct ARC subtypes were identified and were significantly associated with patient survival, clinical features, CMS, CSC index, and TME, but not with gene mutations. Four genes (S100A4, COL3A1, TIMP1, and APP) were identified as key ARCs, capable of distinguishing ARC subtypes. The prognostic signature based on these genes effectively stratified patients into high- or low-risk categories. scRNA-seq analysis showed that these genes were predominantly expressed in immune cells rather than in cancer cells. Validation in two external cohorts and through clinical samples confirmed significant expression differences between CRC and controls. Conclusion: This study identified two ARG subtypes in CRC and highlighted four key genes associated with these subtypes, offering new insights into personalized CRC treatment strategies.

2.
J Fungi (Basel) ; 10(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38786703

RESUMEN

Previous studies have shown that boletes are abundant and diverse in China, especially in tropical and subtropical regions. In the present study, morphological, ecological, host relationship, and a four-locus (28S, tef1, rpb1, and rpb2) molecular phylogenetic analyses were used to study the family Boletaceae in subtropical and tropical China. Four new bluing species are described from three genera, viz. Boletellus verruculosus (Chinese name), Xerocomellus tenuis (Chinese name), Xer. brunneus (Chinese name), and Xerocomus zhangii (Chinese name). Moreover, the genus Nigroboletus is treated as a synonym of Xerocomellus, and a new combination, namely Xer. roseonigrescens (Chinese name), is proposed.

3.
Int J Med Mushrooms ; 26(3): 77-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505905

RESUMEN

Recently, mushroom poisoning is becoming one of the most serious food safety problems in China, especially in Yunnan province. However, there is insufficient information on many poisoning incidents, including mushroom information, identification and poisoning symptoms etc. In October 2022, a female midwife in Yunnan province consumed a wild mushroom twice. Detailed epidemiological investigation and mushroom identification were performed in this report. Based on morphological and phylogenetic analysis, the suspected mushroom was identified as Gymnopus dryophiloides (Omphalotaceae, Agaricomycetes). The victim reported nausea, vomiting, diarrhea, stomachache, accompanied by dizziness, headache, drowsiness, chest tightness, shortness of breath, palpitation, and weakness. The incubation period was approximately 30 min. After the victim's own vomiting, the symptoms began to subside for about an hour. Up to date, there are no detailed reports of poisoning in G. dryophiloides. In conclusion, it is the first detailed poisoning report of G. dryophiloides in the world.


Asunto(s)
Agaricales , Intoxicación por Setas , Humanos , Femenino , Filogenia , China , Vómitos
4.
New Phytol ; 242(3): 1098-1112, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38515249

RESUMEN

The potential for totipotency exists in all plant cells; however, the underlying mechanisms remain largely unknown. Earlier findings have revealed that the overexpression of LEAFY COTYLEDON 2 (LEC2) can directly trigger the formation of somatic embryos on the cotyledons of Arabidopsis. Furthermore, cotyledon cells that overexpress LEC2 accumulate significant lipid reserves typically found in seeds. The precise mechanisms and functions governing lipid accumulation in this process remain unexplored. In this study, we demonstrate that WRINKLED1 (WRI1), the key regulator of lipid biosynthesis, is essential for somatic embryo formation, suggesting that WRI1-mediated lipid biosynthesis plays a crucial role in the transition from vegetative to embryonic development. Our findings indicate a direct interaction between WRI1 and LEC2, which enhances the enrichment of LEC2 at downstream target genes and stimulates their induction. Besides, our data suggest that WRI1 forms a complex with LEC1, LEC2, and FUSCA3 (FUS3) to facilitate the accumulation of auxin and lipid for the somatic embryo induction, through strengthening the activation of YUCCA4 (YUC4) and OLEOSIN3 (OLE3) genes. Our results uncover a regulatory module controlled by WRI1, crucial for somatic embryogenesis. These findings provide valuable insights into our understanding of plant cell totipotency.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Lípidos , Semillas/genética , Factores de Transcripción/metabolismo
5.
J Ethnopharmacol ; 319(Pt 3): 117272, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37820995

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Paris polyphylla var. Yunnanensis (Franch.) Hand.-Mazz., a perennial medicinal herb commonly known as "Chonglou" in Chinese, is mainly effective against innominate toxin swelling, insect sting, snake bite, traumatic injuries and various inflammatory. It is also recorded with mild toxicity. The rare species Paris luquanensis H. Li has been also used as folk medicine in Yunnan province for the same effects. Compared with P. polyphylla var. Yunnanensis (35-100 cm in height), this species has variegated leaves, and grows slower and is therefore shorter (6-23 cm in height). There are a number of different cultivars based on the shape of the petal and the height of Paris plant. However, currently, investigations into the differences of the chemical profiling of these cultivars are lacking. AIM OF THE STUDY: This study aims to: (1) examine metabolites variations in Paris polyphylla var. Yunnanensis cultivars and Paris luquanensis; (2) investigate the different metabolite accumulation patterns between rhizomes and leaves and provide more useful information for the application of P. polyphylla var. Yunnanensis leaves; (3) compare in vivo effects on the recruitment of reactive oxygen species (ROS) and Neutrophils and toxic effects in zebrafish model between leaves and rhizomes of P. polyphylla var. Yunnanensis and P. luquanensis. MATERIALS AND METHODS: The change patterns of metabolites in the leaves and rhizomes of four P. polyphylla var. Yunnanensis cultivars and one P. luquanensis cultivar were analyzed using an UPLC-ESI-MS/MS system. The total phenolic acid, total flavonoid, total saponin components and in vitro antioxidant activities were determined by spectrophotometric methods. The in vivo toxicity and their effects on the recruitment of ROS and neutrophils in zebrafish model were performed. RESULTS: The widely targeted metabolomics method detected 695 metabolites in tested samples and classified as 15 known classes according to structures of the metabolites. By overall-comparing the SDMs discerned between leaves and rhizomes of each samples, 161 metabolites were substantially altered in all the cultivars. There are 62 and 64 SDMs showing constitutive differential accumulation between leaves and rhizomes of P. polyphylla var. Yunnanensis (samples A-D) and P. luquanensis (sample E), respectively. The levels of TSC, TPC and TFC decreased significantly in leaves as compared to rhizomes for all cultivars, with the exception of TPC in cultivar A, which is almost the same in leave and rhizome. The DPPH scavenging property and FRAP values of rhizomes are higher than those of leaves for all cultivars. However, there is no distinct different between leaves and rhizomes of different sample extracts for in vivo effects on the recruitment of ROS and neutrophils in zebrafish model. BL extracts showed high toxicity to the developing embryos. CONCLUSION: As far as we are concerned, this study analyzes the P. polyphylla var. Yunnanensis and P. luquanensis variegation from the perspective of the metabolites pattern for the first time. The results give a valuable insight into the specie metabolic profiling and in vivo anti-oxidant, anti-inflammatory and toxic effects of these Paris plants.


Asunto(s)
Ascomicetos , Escarabajos , Liliaceae , Melanthiaceae , Humanos , Animales , Especies Reactivas de Oxígeno , Espectrometría de Masas en Tándem , Pez Cebra , China , Metaboloma , Antioxidantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...