Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13958, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886495

RESUMEN

Temporal muscle thickness measured on 3D MRI has recently been linked to prognosis in glioblastoma patients and may serve as an independent prognostic indicator. This single-center study looked at temporal muscle thickness and prognosis in patients with primary glioblastoma. Overall survival was the major study outcome. For a retrospective analysis from 2010 to 2020, clinical data from 102 patients with glioblastoma at the Department of Oncology Radiotherapy of the First Affiliated Hospital of Dalian Medical University were gathered. Fifty-five cases from 2016 to 2020 contained glioblastoma molecular typing data, of which 45 were IDH wild-type glioblastomas and were analysed separately. TMT was measured on enhanced T1-weighted magnetic resonance images in patients with newly diagnosed glioblastoma.Overall patient survival (OS) was calculated by the Kaplan-Meier method and survival curves were plotted using the log-rank-sum test to determine differences between groups, and multifactorial analyses were performed using a Cox proportional-risk model.The median TMT for 102 patients was 6.775 mm (range: 4.95-10.45 mm). Patients were grouped according to median TMT, and the median overall survival (23.0 months) was significantly longer in the TMT > median group than in the TMT median group (P 0.001; Log-rank test). Analysing 45 patients with IDH wild type alone, the median overall survival (12 months) of patients in the TMT > median group was significantly longer than that of patients in the TMT ≤ median group (8 months) (P < 0.001; Log-rank test).TMT can serve as an independent prognostic factor for glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Imagen por Resonancia Magnética , Músculo Temporal , Humanos , Glioblastoma/patología , Glioblastoma/diagnóstico por imagen , Glioblastoma/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Músculo Temporal/patología , Músculo Temporal/diagnóstico por imagen , Adulto , Anciano , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/mortalidad , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Estimación de Kaplan-Meier , Isocitrato Deshidrogenasa/genética , Adulto Joven
2.
Front Oncol ; 13: 1143564, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152035

RESUMEN

Purpose: To evaluate the feasibility of using a simplified non-coplanar volumetric modulated arc therapy (NC-VMAT) and investigate its dosimetric advantages compared with intensity modulated radiation therapy (IMRT) and coplanar volumetric modulated arc therapy (C-VMAT) for hippocampal-avoidance whole brain radiation therapy (HA-WBRT). Methods: Ten patients with brain metastase (BM) were included for HA-WBRT. Three treatment plans were generated for each case using IMRT, C-VMAT, and NC-VMAT, respectively. Results: The dosimetric results of the three techniques complied roughly with the RTOG 0933 criteria. After dose normalization, the V30Gy of whole brain planned target volume (WB-PTV) in all the plans was controlled at 95%. Homogeneity index (HI) of WB-PTV was significantly reduced in NC-VMAT (0.249 ± 0.017) over IMRT (0.265 ± 0.020, p=0.005) and C-VMAT (0.261 ± 0.014, p=0.020). In terms of conformity index (CI), NC-VMAT could provide a value of 0.821 ± 0.010, which was significantly superior to IMRT (0.788 ± 0.019, p<0.001). According to D2% of WB-PTV, NC-VMAT could provide a value of 35.62 ± 0.37Gy, significantly superior to IMRT (36.43 ± 0.65Gy, p<0.001). According to D50% of WB-PTV, NC-VMAT can achieve the lowest value of 33.18 ± 0.29Gy, significantly different from IMRT (33.47 ± 0.43, p=0.034) and C-VMAT (33.58 ± 0.37, p=0.006). Regarding D2%, D98%, and Dmean of hippocampus, NC-VMAT could control them at 15.57 ± 0.18Gy, 8.37 ± 0.26Gy and 11.71 ± 0.48Gy, respectively. D2% and Dmean of hippocampus for NC-VMAT was significantly lower than IMRT (D2%: 16.07 ± 0.29Gy, p=0.001 Dmean: 12.18 ± 0.33Gy, p<0.001) and C-VMAT (D2%: 15.92 ± 0.37Gy, p=0.009 Dmean: 12.21 ± 0.54Gy, p<0.001). For other organs-at-risk (OARs), according to D2% of the right optic nerves and the right lenses, NC-VMAT had the lowest values of 31.86 ± 1.11Gy and 7.15 ± 0.31Gy, respectively, which were statistically different from the other two techniques. For other organs including eyes and optic chiasm, NC-VMAT could achieve the lowest doses, different from IMRT statistically. Conclusion: The dosimetry of the three techniques for HA-WBRT could roughly comply with the proposals from RTOG 0933. After dose normalization (D95%=30Gy), NC-VMAT could significantly improve dose homogeneity and reduce the D50% in the brain. Besides, it can reduce the D2% of the hippocampus, optic nerves, and lens. With this approach, an efficient and straightforward plan was accomplished.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...