Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 11: 608352, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33680989

RESUMEN

Listeriosis, caused by Listeria monocytogenes, is a severe food-borne infection. The nationwide surveillance in China concerning listeriosis is urgently needed. In the present study, 144 L. monocytogenes isolates were collected from the samples of blood, cerebrospinal fluid (CSF), and fetal membrane/placenta in China for 12 years from 2008 to 2019. We summarized these listeriosis patients' demographical and clinical features and outcomes. The susceptibility profile for 12 antibiotics was also determined by the broth microdilution method. Multilocus sequence typing (MLST) and serogroups of these listeria isolates were analyzed to designate epidemiological types. We enrolled 144 cases from 29 healthcare centers, including 96 maternal-neonatal infections, 33 cases of bacteremia, 13 cases of neurolisteriosis, and two cutaneous listeriosis. There were 31 (59.6%) fetal loss in 52 pregnant women and four (9.8%) neonatal death in 41 newborns. Among the 48 nonmaternal-neonatal cases, 12.5% (6/48) died, 41.7% (20/48) were female, and 64.6% (31/48) occurred in those with significant comorbidities. By MLST, the strains were distinguished into 23 individual sequence types (STs). The most prevalent ST was ST87 (49 isolates, 34.0%), followed by ST1 (18, 12.5%), ST8 (10, 6.9%), ST619 (9, 6.3%), ST7 (7, 4.9%) and ST3 (7, 4.9%). Furthermore, all L. monocytogenes isolates were uniformly susceptible to penicillin, ampicillin, and meropenem. In summary, our study highlights a high genotypic diversity of L. monocytogenes strains causing clinical listeriosis in China. Furthermore, a high prevalence of ST87 and ST1 in the listeriosis should be noted.


Asunto(s)
Listeria monocytogenes , Listeriosis , China/epidemiología , Femenino , Microbiología de Alimentos , Variación Genética , Humanos , Recién Nacido , Listeria monocytogenes/genética , Listeriosis/epidemiología , Masculino , Tipificación de Secuencias Multilocus , Embarazo
2.
Vet Microbiol ; 255: 108960, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33667981

RESUMEN

Chlamydia psittaci is an obligate intracellular zoonotic pathogen that can enter a persistence state in host cells. While the exact pathogenesis is not well understood, this persistence state may play an important role in chronic Chlamydia disease. Here, we assess the effects of chlamydial persistence state in vitro and in vivo by transmission electron microscopy (TEM) and cDNA microarray assays. First, IFN-γ-induced C. psittaci persistence in HeLa cells resulted in the upregulation of 68 genes. These genes are involved in protein translation, carbohydrate metabolism, nucleotide metabolism, lipid metabolism and general stress. However, 109 genes were downregulated following persistent C. psittaci infection, many of which are involved in the TCA cycle, expression regulation and transcription, protein secretion, proteolysis and transport, membrane protein, presumed virulence factor, cell division and late expression. To further study differential gene expression of C. psittaci persistence in vivo, we established an experimentally tractable mouse model of C. psittaci persistence. The C. psittaci-infected mice were gavaged with either water or amoxicillin (amox), and the results indicated that the 20 mg/kg amox-exposed C. psittaci were viable but not infectious. Differentially expressed genes (DEGs) screened by cDNA microarray were detected, and interestingly, the results showed upregulation of three genes (euo, ahpC, prmC) and downregulation of five genes (pbp3, sucB_1, oppA_4, pmpH, ligA) in 20 mg/kg amox-exposed C. psittaci, which suggests that antibiotic treatment in vivo can induce chlamydial persistence state and lead to differential gene expression. However, the discrepancy on inducers between the two models requires more research to supplement. The results may help researchers better understand survival advantages during persistent infection and mechanisms influencing C. psittaci pathogenesis or evasion of the adaptive immune response.


Asunto(s)
Chlamydophila psittaci/fisiología , Psitacosis/metabolismo , Amoxicilina/administración & dosificación , Amoxicilina/uso terapéutico , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Citocinas/genética , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Femenino , Regulación de la Expresión Génica/fisiología , Vida Libre de Gérmenes , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Psitacosis/tratamiento farmacológico , Psitacosis/inmunología , Psitacosis/microbiología , Transcriptoma , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...