Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 688
Filtrar
1.
Front Pharmacol ; 15: 1378483, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966559

RESUMEN

Introduction: Cancer, particularly lung cancer, is a significant global healthcare challenge. Non-Small Cell Lung Cancer (NSCLC) constitutes 85% of cases. Patients often seek alternative therapies like Chinese medicine alongside Western treatments. This study investigates the survival outcomes and cost-effectiveness of adjunctive Chinese medicine therapy for NSCLC patients in Taiwan. Methods: We utilized the National Health Insurance Research Database in a retrospective cohort study from 2000 to 2018, focusing on NSCLC patients diagnosed between 2007 and 2013. After propensity score matching 1:5 ratio, then compared patients with and without adjunctive Chinese medicine therapy. Survival outcomes, cost-effectiveness, and sensitivity analyses were conducted. Results: The study involved 43,122 NSCLC patients with 5.76% receiving adjunctive Chinese medicine. There is no significant associated between the risk of death and adjuvant Chinese medicine therapy until 181-365 days of adjuvant treatment could reduce the risk of death (HR = 0.88, 95% CI: 0.80-0.98). Cost-effectiveness analysis showed an incremental cost-effectiveness ratio of 880,908 NT$/year. Conclusion: Adjunctive Chinese medicine therapy, particularly when administered for 181-365 days, significantly reduced the mortality risk among stage IV NSCLC patients. The cost-effectiveness aligns with willingness-to-pay thresholds, indicating economic benefit.

2.
Opt Lett ; 49(13): 3806-3809, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950276

RESUMEN

Current non-confocal non-line-of-sight (NLOS) imaging faces the problems of low resolution and limited scene adaptability. We propose a non-confocal NLOS imaging method based on spherical-slice transform from spatial and temporal frequency to space and time. Simulation and experimental results show that the proposed method has high-resolution reconstruction without artifact interference, shape distortion, and position offset. Furthermore, it has strong scene adaptability. After GPU acceleration, the reconstruction time of the proposed method can be reduced to several hundred milliseconds for the PF32 photon array camera with 32 × 32 detection units. In the future, the proposed method has great potential for application in real-time NLOS imaging systems.

3.
IEEE Trans Biomed Eng ; PP2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990741

RESUMEN

OBJECTIVE: Super-resolution ultrasound (SRUS) imaging through localizing and tracking microbubbles, also known as ultrasound localization microscopy (ULM), can produce sub-diffraction resolution images of micro-vessels. We have recently demonstrated 3-D selective SRUS with a matrix array and phase change contrast agents (PCCAs). However, this method is limited to a small field of view (FOV) and by the complex hardware required. METHOD: This study proposed 3-D acoustic wave sparsely activated localization microscopy (AWSALM) using PCCAs and a 128+128 row-column-addressed (RCA) array, which offers ultrafast acquisition with over 6 times larger FOV and 4 times reduction in hardware complexity than a 1024-element matrix array. We first validated this method on an in-vitro microflow phantom and subsequently demonstrated non-invasively on a rabbit kidney in-vivo. RESULTS: Our results show that 3-D AWSALM images of the phantom covering a 25×25×40 mm 3 volume can be generated under 5 seconds with an 8 times resolution improvement over the system point spread function. The full volume of the rabbit kidney can be covered to generate 3-D microvascular structure, flow speed and direction super-resolution maps under 15 seconds, combining the large FOV of RCA with the high resolution of SRUS. Additionally, 3-D AWSALM is selective and can visualize the microvasculature within the activation volume and downstream vessels in isolation. Sub-sets of the kidney microvasculature can be imaged through selective activation of PCCAs. CONCLUSION: Our study demonstrates large FOV 3-D AWSALM using an RCA probe. SIGNIFICANCE: 3-D AWSALM offers an unique in-vivo imaging tool for fast, selective and large FOV vascular flow mapping.

4.
Front Pharmacol ; 15: 1348688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948474

RESUMEN

Purpose: To evaluate the cost-effectiveness of sotorasib versus docetaxel in non-small cell lung cancer (NSCLC) patients with KRASG12C mutation from the China and United States'social perspective. Materials and Methods: A Markov model that included three states (progression-free survival, post-progression survival, and death) was developed. Incremental cost-effectiveness ratio (ICER), quality-adjusted life-year (QALY), and incremental QALY were calculated for the two treatment strategies. One-way sensitivity analysis was used to investigate the factors that had a greater impact on the model results, and tornado diagrams were used to present the results. Probabilistic sensitivity analysis was performed with 1,000 Monte Carlo simulations. Assume distributions based on parameter types and randomly sample all parameter distributions each time., The results were presented as cost-effectiveness acceptable curves. Results: This economic evaluation of data from the CodeBreak 200 randomized clinical trial. In China, sotorasib generated 0.44 QAYL with a total cost of $84372.59. Compared with docetaxel, the ICER value of sotorasib was $102701.84/QALY, which was higher than willingness to pay (WTP), so sotorasib had no economic advantage. In the US, sotorasib obtained 0.35 QALY more than docetaxel, ICER was $15,976.50/QALY, which was more than 1 WTP but less than 3 WTP, indicating that the increased cost of sotorasib was acceptable. One-way sensitivity analysis showed that the probability of sotorasib having economic benefits gradually increased when the cost of follow-up examination was reduced in China. And there was no influence on the conclusions within the range of changes in China. When the willingness to pay (WTP) exceeds $102,500, the probability of sotorasib having cost effect increases from 0% to 49%. Conclusion: Sotorasib had a cost effect from the perspective in the United States. However, sotorasib had no cost effect from the perspective in China, and only when the WTP exceeds $102,500, the probability of sotorasib having cost effect increases from 0% to 49%.

5.
Int J Nurs Stud ; 157: 104816, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38824719

RESUMEN

BACKGROUND: In 2009, China launched a new round of healthcare reform to provide households with secure, efficient, convenient, equitable and affordable healthcare services. Healthcare reform is underpinned by three critical pillars: the health workforce, funding, and infrastructure, with reform of the health workforce being particularly significant. OBJECTIVE: This study analyses the disparities in regional distribution and the inequity of healthcare workforce allocation across hospitals and primary health centers in China over twelve years. DESIGN: Retrospective longitudinal data from the National Health Statistics Yearbook 2011-2022 and National Statistical Yearbook in China from 2011 to 2022 were collected for analysis. PARTICIPANTS: The focus was on hospitals and primary health centers, explicitly examining their health technician and nursing workforce. METHODS: The research utilized four key indicators of the healthcare workforce to evaluate the distribution of health resources between hospitals and primary health centers. Furthermore, the Gini coefficient and Theil index were employed to assess the inequality in allocating the health workforce. RESULTS: Between 2010 and 2021, there was a nationwide increase in the ratio of health workers per 1000 population in hospitals and primary health centers. It is noted that rural districts had higher ratios than urban districts in terms of the number of health technicians and nurses per 1000 population, whether in hospitals or primary health centers; western districts had higher ratios than eastern and central districts did. In the same year, at different levels of medical institutions, the Theil indices of health technicians and nurses in hospitals were lower than those in primary health centers in terms of both demographic and geographical dimensions. Regarding the allocation of the health workforce by population, the Gini coefficient remained below 0.3, while for geographical allocation, it exceeded 0.4. CONCLUSIONS: This study analyzed the temporal trends and inequality of health-resource allocation at the hospital and primary health center levels in China, noting trends of improvements in the quantity and inequality in health workforce allocation from 2010 to 2021, suggesting the success of the government's efforts to advance healthcare reform since 2009. The allocation of health workforce based on population exhibits greater fairness compared to geographical distribution.


Asunto(s)
Fuerza Laboral en Salud , Atención Primaria de Salud , China , Estudios Longitudinales , Atención Primaria de Salud/estadística & datos numéricos , Fuerza Laboral en Salud/estadística & datos numéricos , Humanos , Hospitales/estadística & datos numéricos , Disparidades en Atención de Salud/estadística & datos numéricos , Estudios Retrospectivos
6.
Plant Sci ; 346: 112161, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38879177

RESUMEN

Paper mulberry (Broussonetia papyrifera) is a fast-growing tree known for its tolerance to diverse biotic and abiotic stresses. To explore genes combating Verticillium wilt, a devasting and formidable disease damage to cotton and many economically significant crops, we purified an antifungal protein, named BpAFP, from the latex of paper mulberry. Based on peptide fingerprint, we cloned the full cDNA sequence of BpAFP and revealed that BpAFP belongs to Class I chitinases, sharing 74 % identity with B. papyrifera leaf chitinase, PMAPII. We further introduced BpAFP into Arabidopsis, tobacco, and cotton. Transgenic plants exhibited significant resistance to Verticillium wilt. Importantly, BpAFP also demonstrated insecticidal activity against herbivorous pests, Plutella xylostella, and Prodenia litura, when feeding the larvae with transgenic leaves. Our finding unveils a dual role of BpAFP in conferring resistance to both plant diseases and lepidopterous pests.


Asunto(s)
Quitinasas , Látex , Mariposas Nocturnas , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Verticillium , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Quitinasas/metabolismo , Quitinasas/genética , Animales , Mariposas Nocturnas/fisiología , Verticillium/fisiología , Látex/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Filogenia , Arabidopsis/genética , Arabidopsis/microbiología
7.
Nat Commun ; 15(1): 3717, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697983

RESUMEN

The chiral antiferromagnetic (AFM) materials, which have been widely investigated due to their rich physics, such as non-zero Berry phase and topology, provide a platform for the development of antiferromagnetic spintronics. Here, we find two distinctive anomalous Hall effect (AHE) contributions in the chiral AFM Mn3Pt, originating from a time-reversal symmetry breaking induced intrinsic mechanism and a skew scattering induced topological AHE due to an out-of-plane spin canting with respect to the Kagome plane. We propose a universal AHE scaling law to explain the AHE resistivity ( ρ A H ) in this chiral magnet, with both a scalar spin chirality (SSC)-induced skew scattering topological AHE term, a s k and non-collinear spin-texture induced intrinsic anomalous Hall term, b i n . We found that a s k and b i n can be effectively modulated by the interfacial electron scattering, exhibiting a linear relation with the inverse film thickness. Moreover, the scaling law can explain the anomalous Hall effect in various chiral magnets and has far-reaching implications for chiral-based spintronics devices.

8.
Ultrasound Med Biol ; 50(7): 1045-1057, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38702285

RESUMEN

OBJECTIVE: This study aimed to realise 3-D super-resolution ultrasound imaging transcutaneously with a row-column array which has far fewer independent electronic channels and a wider field of view than typical fully addressed 2-D matrix arrays. The in vivo image quality of the row-column array is generally poor, particularly when imaging non-invasively. This study aimed to develop a suite of image formation and post-processing methods to improve image quality and demonstrate the feasibility of ultrasound localisation microscopy using a row-column array, transcutaneously on a rabbit model and in a human. METHODS: To achieve this, a processing pipeline was developed which included a new type of rolling window image reconstruction, which integrated a row-column array specific coherence-based beamforming technique with acoustic sub-aperture processing. This and other processing steps reduced the 'secondary' lobe artefacts, and noise and increased the effective frame rate, thereby enabling ultrasound localisation images to be produced. RESULTS: Using an in vitro cross tube, it was found that the procedure reduced the percentage of 'false' locations from ∼26% to ∼15% compared to orthogonal plane wave compounding. Additionally, it was found that the noise could be reduced by ∼7 dB and the effective frame rate was increased to over 4000 fps. In vivo, ultrasound localisation microscopy was used to produce images non-invasively of a rabbit kidney and a human thyroid. CONCLUSION: It has been demonstrated that the proposed methods using a row-column array can produce large field of view super-resolution microvascular images in vivo and in a human non-invasively.


Asunto(s)
Imagenología Tridimensional , Ultrasonografía , Conejos , Animales , Humanos , Ultrasonografía/métodos , Imagenología Tridimensional/métodos , Diseño de Equipo , Fantasmas de Imagen , Piel/diagnóstico por imagen , Estudios de Factibilidad
9.
Am J Physiol Heart Circ Physiol ; 327(1): H80-H88, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38787379

RESUMEN

This study investigated the sensitivity and specificity of identifying heart failure with reduced ejection fraction (HFrEF) from measurements of the intensity and timing of arterial pulse waves. Previously validated methods combining ultrafast B-mode ultrasound, plane-wave transmission, singular value decomposition (SVD), and speckle tracking were used to characterize the compression and decompression ("S" and "D") waves occurring in early and late systole, respectively, in the carotid arteries of outpatients with left ventricular ejection fraction (LVEF) < 40%, determined by echocardiography, and signs and symptoms of heart failure, or with LVEF ≥ 50% and no signs or symptoms of heart failure. On average, the HFrEF group had significantly reduced S-wave intensity and energy, a greater interval between the R wave of the ECG and the S wave, a reduced interval between the S and D waves, and an increase in the S-wave shift (SWS), a novel metric that characterizes the shift in timing of the S wave away from the R wave of the ECG and toward the D wave (all P < 0.01). Receiver operating characteristics (ROCs) were used to quantify for the first time how well wave metrics classified individual participants. S-wave intensity and energy gave areas under the ROC of 0.76-0.83, the ECG-S-wave interval gave 0.85-0.88, and the S-wave shift gave 0.88-0.92. Hence the methods, which are simple to use and do not require complex interpretation, provide sensitive and specific identification of HFrEF. If similar results were obtained in primary care, they could form the basis of techniques for heart failure screening.NEW & NOTEWORTHY We show that heart failure with reduced ejection fraction can be detected with excellent sensitivity and specificity in individual patients by using B-mode ultrasound to detect altered pulse wave intensity and timing in the carotid artery.


Asunto(s)
Insuficiencia Cardíaca , Análisis de la Onda del Pulso , Volumen Sistólico , Humanos , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/diagnóstico por imagen , Femenino , Masculino , Anciano , Persona de Mediana Edad , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/fisiopatología , Función Ventricular Izquierda , Valor Predictivo de las Pruebas , Electrocardiografía , Ecocardiografía , Curva ROC
10.
Toxicology ; 505: 153825, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710382

RESUMEN

Cadmium telluride (CdTe) quantum dots (QDs) have garnered significant attention for tumor imaging due to their exceptional properties. However, there remains a need for further investigation into their potential toxicity mechanisms and corresponding enhancements. Herein, CdTe QDs were observed to accumulate in mouse liver, leading to a remarkable overproduction of IL-1ß and IL-6. Additionally, there was evidence of macrophage infiltration and activation following exposure to 12.5 µmol/kg body weight of QDs. To elucidate the underlying mechanism of macrophage activation, CdTe QDs functionalized with 3-mercaptopropionic acid (MPA) were utilized. In vitro experiments revealed that 1.0 µM MPA-CdTe QDs activated PINK1-dependent mitophagy in RAW264.7 macrophages. Critically, the autophagic flux remained unimpeded, as demonstrated by the absence of p62 accumulation, LC3 turnover assay results, and successful fusion of autophagosomes with lysosomes. Mechanically, QDs increased reactive oxygen species (ROS) and mitoROS by damaging both mitochondria and lysosomes. ROS, in turn, inhibited NRF2, resulting in the phosphorylation of ERK1/2 and subsequent activation of mitophagy. Notably, 1.0 µM QDs disrupted lysosomes but autophagic flux was not impaired. Eventually, the involvement of the ROS-NRF2-ERK1/2 pathway-mediated mitophagy in the increase of IL-1ß and IL-6 in macrophages was confirmed using Trolox, MitoTEMPO, ML385, specific siRNAs, and lentivirus-based interventions. This study innovatively revealed the pro-inflammatory rather than anti-inflammatory role of mitophagy in nanotoxicology, shedding new light on the mechanisms of mitochondrial disorders induced by QDs and identifying several molecular targets to comprehend the toxicological mechanisms of CdTe QDs.


Asunto(s)
Compuestos de Cadmio , Activación de Macrófagos , Mitofagia , Factor 2 Relacionado con NF-E2 , Puntos Cuánticos , Especies Reactivas de Oxígeno , Telurio , Animales , Telurio/toxicidad , Puntos Cuánticos/toxicidad , Ratones , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Cadmio/toxicidad , Mitofagia/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Células RAW 264.7 , Activación de Macrófagos/efectos de los fármacos , Masculino , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
11.
Nat Biomed Eng ; 8(6): 689-700, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710839

RESUMEN

Myocardial microvasculature and haemodynamics are indicative of potential microvascular diseases for patients with symptoms of coronary heart disease in the absence of obstructive coronary arteries. However, imaging microvascular structure and flow within the myocardium is challenging owing to the small size of the vessels and the constant movement of the patient's heart. Here we show the feasibility of transthoracic ultrasound localization microscopy for imaging myocardial microvasculature and haemodynamics in explanted pig hearts and in patients in vivo. Through a customized data-acquisition and processing pipeline with a cardiac phased-array probe, we leveraged motion correction and tracking to reconstruct the dynamics of microcirculation. For four patients, two of whom had impaired myocardial function, we obtained super-resolution images of myocardial vascular structure and flow using data acquired within a breath hold. Myocardial ultrasound localization microscopy may facilitate the understanding of myocardial microcirculation and the management of patients with cardiac microvascular diseases.


Asunto(s)
Microcirculación , Humanos , Animales , Porcinos , Miocardio/patología , Microvasos/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Ecocardiografía/métodos , Hemodinámica , Microscopía/métodos , Masculino , Femenino , Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Persona de Mediana Edad
12.
IEEE Trans Med Imaging ; PP2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578852

RESUMEN

High intensity focused ultrasound (HIFU) is a thriving non-invasive technique for thermal ablation of tumors, but significant challenges remain in its real-time monitoring with medical imaging. Ultrasound imaging is one of the main imaging modalities for monitoring HIFU surgery in organs other than the brain, mainly due to its good temporal resolution. However, strong acoustic interference from HIFU irradiation severely obscures the B-mode images and compromises the monitoring. To address this problem, we proposed a frequency-domain robust principal component analysis (FRPCA) method to separate the HIFU interference from the contaminated B-mode images. Ex-vivo and in-vivo experiments were conducted to validate the proposed method based on a clinical HIFU therapy system combined with an ultrasound imaging platform. The performance of the FRPCA method was compared with the conventional notch filtering method. Results demonstrated that the FRPCA method can effectively remove HIFU interference from the B-mode images, which allowed HIFU-induced grayscale changes at the focal region to be recovered. Compared to notch-filtered images, the FRPCA-processed images showed an 8.9% improvement in terms of the structural similarity (SSIM) index to the uncontaminated B-mode images. These findings demonstrate that the FRPCA method presents an effective signal processing framework to remove the strong HIFU acoustic interference, obtains better dynamic visualization in monitoring the HIFU irradiation process, and offers great potential to improve the efficacy and safety of HIFU treatment and other focused ultrasound related applications.

14.
IEEE Trans Med Imaging ; PP2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607705

RESUMEN

With the widespread interest and uptake of super-resolution ultrasound (SRUS) through localization and tracking of microbubbles, also known as ultrasound localization microscopy (ULM), many localization and tracking algorithms have been developed. ULM can image many centimeters into tissue in-vivo and track microvascular flow non-invasively with sub-diffraction resolution. In a significant community effort, we organized a challenge, Ultrasound Localization and TRacking Algorithms for Super-Resolution (ULTRA-SR). The aims of this paper are threefold: to describe the challenge organization, data generation, and winning algorithms; to present the metrics and methods for evaluating challenge entrants; and to report results and findings of the evaluation. Realistic ultrasound datasets containing microvascular flow for different clinical ultrasound frequencies were simulated, using vascular flow physics, acoustic field simulation and nonlinear bubble dynamics simulation. Based on these datasets, 38 submissions from 24 research groups were evaluated against ground truth using an evaluation framework with six metrics, three for localization and three for tracking. In-vivo mouse brain and human lymph node data were also provided, and performance assessed by an expert panel. Winning algorithms are described and discussed. The publicly available data with ground truth and the defined metrics for both localization and tracking present a valuable resource for researchers to benchmark algorithms and software, identify optimized methods/software for their data, and provide insight into the current limits of the field. In conclusion, Ultra-SR challenge has provided benchmarking data and tools as well as direct comparison and insights for a number of the state-of-the art localization and tracking algorithms.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38607709

RESUMEN

Ultrasound localization microscopy (ULM) overcomes the acoustic diffraction limit by localizing tiny microbubbles (MBs), thus enabling the microvascular to be rendered at sub-wavelength resolution. Nevertheless, to obtain such superior spatial resolution, it is necessary to spend tens of seconds gathering numerous ultrasound (US) frames to accumulate MB events required, resulting in ULM imaging still suffering from trade-offs between imaging quality, data acquisition time and data processing speed. In this paper, we present a new deep learning (DL) framework combining multi-branch CNN and recursive Transformer, termed as ULM-MbCNRT, that is capable of reconstructing a super-resolution image directly from a temporal mean low-resolution image generated by averaging much fewer raw US frames, i.e., implement an ultrafast ULM imaging. To evaluate the performance of ULM-MbCNRT, a series of numerical simulations and in vivo experiments are carried out. Numerical simulation results indicate that ULM-MbCNRT achieves high-quality ULM imaging with ~10-fold reduction in data acquisition time and ~130-fold reduction in computation time compared to the previous DL method (e.g., the modified sub-pixel convolutional neural network, ULM-mSPCN). For the in vivo experiments, when comparing to the ULM-mSPCN, ULM-MbCNRT allows ~37-fold reduction in data acquisition time (~0.8 s) and ~2134-fold reduction in computation time (~0.87 s) without sacrificing spatial resolution. It implies that ultrafast ULM imaging holds promise for observing rapid biological activity in vivo, potentially improving the diagnosis and monitoring of clinical conditions.

16.
Part Fibre Toxicol ; 21(1): 19, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600504

RESUMEN

BACKGROUND: Recently, carbon quantum dots (CQDs) have been widely used in various fields, especially in the diagnosis and therapy of neurological disorders, due to their excellent prospects. However, the associated inevitable exposure of CQDs to the environment and the public could have serious severe consequences limiting their safe application and sustainable development. RESULTS: In this study, we found that intranasal treatment of 5 mg/kg BW (20 µL/nose of 0.5 mg/mL) CQDs affected the distribution of multiple metabolites and associated pathways in the brain of mice through the airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) technique, which proved effective in discovery has proven to be significantly alerted and research into tissue-specific toxic biomarkers and molecular toxicity analysis. The neurotoxic biomarkers of CQDs identified by MSI analysis mainly contained aminos, lipids and lipid-like molecules which are involved in arginine and proline metabolism, biosynthesis of unsaturated fatty acids, and glutamine and glutamate metabolism, etc. as well as related metabolic enzymes. The levels or expressions of these metabolites and enzymes changed by CQDs in different brain regions would induce neuroinflammation, organelle damage, oxidative stress and multiple programmed cell deaths (PCDs), leading to neurodegeneration, such as Parkinson's disease-like symptoms. This study enlightened risk assessments and interventions of QD-type or carbon-based nanoparticles on the nervous system based on toxic biomarkers regarding region-specific profiling of altered metabolic signatures. CONCLUSION: These findings provide information to advance knowledge of neurotoxic effects of CQDs and guide their further safety evaluation.


Asunto(s)
Síndromes de Neurotoxicidad , Puntos Cuánticos , Ratones , Animales , Puntos Cuánticos/toxicidad , Carbono/toxicidad , Carbono/química , Metabolómica/métodos , Encéfalo , Síndromes de Neurotoxicidad/etiología , Biomarcadores
17.
Phys Med Biol ; 69(11)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38588678

RESUMEN

Super-resolution ultrasound (SRUS) through localising and tracking of microbubbles (MBs) can achieve sub-wavelength resolution for imaging microvascular structure and flow dynamics in deep tissuein vivo. The technique assumes that signals from individual MBs can be isolated and localised accurately, but this assumption starts to break down when the MB concentration increases and the signals from neighbouring MBs start to interfere. The aim of this study is to gain understanding of the effect of MB-MB distance on ultrasound images and their localisation. Ultrasound images of two MBs approaching each other were synthesised by simulating both ultrasound field propagation and nonlinear MB dynamics. Besides the distance between MBs, a range of other influencing factors including MB size, ultrasound frequency, transmit pulse sequence, pulse amplitude and localisation methods were studied. The results show that as two MBs approach each other, the interference fringes can lead to significant and oscillating localisation errors, which are affected by both the MB and imaging parameters. When modelling a clinical linear array probe operating at 6 MHz, localisation errors between 20 and 30µm (∼1/10 wavelength) can be generated when MBs are ∼500µm (2 wavelengths or ∼1.7 times the point spread function (PSF)) away from each other. When modelling a cardiac probe operating at 1.5 MHz, the localisation errors were as high as 200µm (∼1/5 wavelength) even when the MBs were more than 10 wavelengths apart (2.9 times the PSF). For both frequencies, at smaller separation distances, the two MBs were misinterpreted as one MB located in between the two true positions. Cross-correlation or Gaussian fitting methods were found to generate slightly smaller localisation errors than centroiding. In conclusion, caution should be taken when generating and interpreting SRUS images obtained using high agent concentration with MBs separated by less than 1.7 to 3 times the PSF, as significant localisation errors can be generated due to interference between neighbouring MBs.


Asunto(s)
Microburbujas , Ultrasonografía , Ultrasonografía/métodos , Procesamiento de Imagen Asistido por Computador/métodos
18.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38668183

RESUMEN

Reproductive disorders and declining fertility rates are significant public health concerns affecting birth rates and future populations. Male infertility, often due to spermatogenesis defects, may be linked to environmental pollutants like nickel nanoparticles (Ni NPs). Ni NPs are extensively utilized across different industries. Nevertheless, their potential adverse effects cannot be overlooked. Previous studies have linked the reproductive toxicity induced by Ni NPs with disturbances in mitochondrial function. Mitochondrial division/fusion dynamics are crucial to their proper function, yet little is known about how Ni NPs perturb these dynamics and whether such perturbation contributes to the impairment of the male reproductive system. Herein, we demonstrated that the exposure of Ni NPs to the mouse-derived spermatogonia cell line (GC-1 cells) triggered DRP1-mediated mitochondrial division and the enhanced impairment of mitochondria, consequently promoting mitochondria-dependent cell apoptosis. Notably, both the mitochondrial division inhibitor (Mdivi-1) and lentiviral-transfected cells with low expression of Dnm1l-DK in these cells could mitigate the toxic effects induced by Ni NPs, pointing to the potential role of mitochondrial dynamics in Ni NP-induced reproductive toxicity. Collectively, our work contributes to the understanding of the mechanisms by which Ni NPs can impact male reproductive function and identifies mitochondrial division as a potential target for intervention.

19.
NanoImpact ; 34: 100505, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579989

RESUMEN

The increasing application of quantum dots (QDs) increases interactions with organisms. The inflammatory imbalance is a significant manifestation of immunotoxicity. Macrophages maintain inflammatory homeostasis. Using macrophages differentiated by phorbol 12-myristate 13-acetate-induced THP-1 cells as models, the study found that low-dose (5 µM) cadmium telluride QDs (CdTe-QDs) hindered monocyte-macrophage differentiation. CD11b is a surface marker of macrophage, and the addition of CdTe-QDs during induction resulted in a decrease in CD11b expression. Moreover, exposure of differentiated THP-1 macrophage (dTHP-1) to 5 µM CdTe-QDs led to the initiation of M1 polarization. This was indicated by the increased surface marker CD86 expression, along with elevated level of NF-κB and IL-1ß proteins. The potential mechanisms are being explored. The transcription factor EB (TFEB) plays a significant role in immune regulation and serves as a crucial regulator of the autophagic lysosomal pathway. After exposed to CdTe-QDs, TFEB activation-mediated autophagy and M1 polarization were observed to occur simultaneously in dTHP-1. The mTOR signaling pathway contributed to TFEB activation induced by CdTe-QDs. However, mTOR-independent activation of TFEB failed to promote M1 polarization. These results suggest that mTOR-TFEB is an advantageous target to enhance the biocompatibility of CdTe-QDs.


Asunto(s)
Compuestos de Cadmio , Macrófagos , Puntos Cuánticos , Serina-Treonina Quinasas TOR , Telurio , Telurio/farmacología , Compuestos de Cadmio/farmacología , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células THP-1 , Autofagia/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
20.
Prog Neurobiol ; 236: 102614, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641040

RESUMEN

Complement activation and prefrontal cortical dysfunction both contribute to the pathogenesis of major depressive disorder (MDD), but their interplay in MDD is unclear. We here studied the role of complement C3a receptor (C3aR) in the medial prefrontal cortex (mPFC) and its influence on depressive-like behaviors induced by systematic lipopolysaccharides (LPS) administration. C3aR knockout (KO) or intra-mPFC C3aR antagonism confers resilience, whereas C3aR expression in mPFC neurons makes KO mice susceptible to LPS-induced depressive-like behaviors. Importantly, the excitation and inhibition of mPFC neurons have opposing effects on depressive-like behaviors, aligning with increased and decreased excitability by C3aR deletion and activation in cortical neurons. In particular, inhibiting mPFC glutamatergic (mPFCGlu) neurons, the main neuronal subpopulation expresses C3aR, induces depressive-like behaviors in saline-treated WT and KO mice, but not in LPS-treated KO mice. Compared to hypoexcitable mPFCGlu neurons in LPS-treated WT mice, C3aR-null mPFCGlu neurons display hyperexcitability upon LPS treatment, and enhanced excitation of mPFCGlu neurons is anti-depressant, suggesting a protective role of C3aR deficiency in these circumstances. In conclusion, C3aR modulates susceptibility to LPS-induced depressive-like behaviors through mPFCGlu neuronal excitability. This study identifies C3aR as a pivotal intersection of complement activation, mPFC dysfunction, and depression and a promising therapeutic target for MDD.


Asunto(s)
Depresión , Lipopolisacáridos , Ratones Noqueados , Neuronas , Corteza Prefrontal , Animales , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Lipopolisacáridos/farmacología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratones , Depresión/metabolismo , Depresión/inducido químicamente , Receptores de Complemento/metabolismo , Ratones Endogámicos C57BL , Masculino , Ácido Glutámico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...