Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Acta Pharm Sin B ; 14(5): 1895-1923, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38799634

RESUMEN

RAS mutations occur in approximately 30% of tumors worldwide and have a poor prognosis due to limited therapies. Covalent targeting of KRAS G12C has achieved significant success in recent years, but there is still a lack of efficient therapeutic approaches for tumors with non-G12C KRAS mutations. A highly promising approach is to target the MAPK pathway downstream of RAS, with a particular focus on RAF kinases. First-generation RAF inhibitors have been authorized to treat BRAF mutant tumors for over a decade. However, their use in RAS-mutated tumors is not recommended due to the paradoxical ERK activation mainly caused by RAF dimerization. To address the issue of RAF dimerization, type II RAF inhibitors have emerged as leading candidates. Recent clinical studies have shown the initial effectiveness of these agents against RAS mutant tumors. Promisingly, type II RAF inhibitors in combination with MEK or ERK inhibitors have demonstrated impressive efficacy in RAS mutant tumors. This review aims to clarify the importance of RAF dimerization in cellular signaling and resistance to treatment in tumors with RAS mutations, as well as recent progress in therapeutic approaches to address the problem of RAF dimerization in RAS mutant tumors.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38436892

RESUMEN

Metastasis remains the principal trigger for relapse and mortality across diverse cancer types. Circulating tumor cells (CTCs), which originate from the primary tumor or its metastatic sites, traverse the vascular system, serving as precursors in cancer recurrence and metastasis. Nevertheless, before CTCs can establish themselves in the distant parenchyma, they must overcome significant challenges present within the circulatory system, including hydrodynamic shear stress (HSS), oxidative damage, anoikis, and immune surveillance. Recently, there has been a growing body of compelling evidence suggesting that a specific subset of CTCs can persist within the bloodstream, but the precise mechanisms of their survival remain largely elusive. This review aims to present an outline of the survival challenges encountered by CTCs and to summarize the recent advancements in understanding the underlying survival mechanisms, suggesting their implications for cancer treatment.

3.
NPJ Biofilms Microbiomes ; 10(1): 5, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245554

RESUMEN

A high-fat diet (HFD) may be linked to an increased colorectal cancer (CRC) risk. Stem cell proliferation and adipokine release under inflammatory and obese conditions are the main factors regulating CRC progression. Furthermore, alterations in intestinal flora have been linked to tumorigenesis and tumour progression. However, whether a HFD can promote CRC occurrence by altering intestinal flora remains unclear. The objective of this study was to identify bacterial strains enriched by a HFD and investigate the association and mechanism by which a HFD and bacterial enrichment promote CRC occurrence and development. In this study, the intestinal microbiota of mice was assessed using 16S rRNA and metagenomic sequencing. Serum metabolites of HFD-fed mice were assessed using tandem liquid chromatography-mass spectrometry. CRC cell lines and organoids were co-cultured with Coriobacteriaceae to evaluate the effect of these bacteria on the CPT1A-ERK signalling pathway. We found that Coriobacteriaceae were enriched in the colons of HFD-fed mice. An endogenous Coriobacteriaceae strain, designated as Cori.ST1911, was successfully isolated and cultured from the stools of HFD-fed mice, and the tumorigenic potential of Cori.ST1911 in CRC was validated in several CRC mouse models. Furthermore, Cori.ST1911 increased acylcarnitine levels by activating CPT1A, demonstrating the involvement of the CPT1A-ERK axis. We also found that the endogenous Lactobacillus strain La.mu730 can interfere with Cori.ST1911 colonisation and restore gut barrier function. In conclusion, we identified a novel endogenous intestinal Coriobacteriaceae, Cori.ST1911, which might lead to a new gut microbiota intervention strategy for the prevention and treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , ARN Ribosómico 16S/genética , Carcinogénesis , Microbioma Gastrointestinal/fisiología , Neoplasias Colorrectales/etiología
4.
Front Neurol ; 14: 1181629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360339

RESUMEN

Objective: Early recognition of autoimmune encephalitis (AIE) is often difficult and time-consuming. Understanding how the micro-level (antibodies) and macro-level (EEG) couple with each other may help rapidly diagnose and appropriately treat AIE. However, limited studies focused on brain oscillations involving micro- and macro-interactions in AIE from a neuro-electrophysiological perspective. Here, we investigated brain network oscillations in AIE using Graph theoretical analysis of resting state EEG. Methods: AIE Patients (n = 67) were enrolled from June 2018 to June 2022. Each participant underwent a ca.2-hour 19-channel EEG examination. Five 10-second resting state EEG epochs with eyes closed were extracted for each participant. The functional networks based on the channels and Graph theory analysis were carried out. Results: Compared with the HC group, significantly decreased FC across whole brain regions at alpha and beta bands were found in AIE patients. In addition, the local efficiency and clustering coefficient of the delta band was higher in AIE patients than in the HC group (P < 0.05). AIE patients had a smaller world index (P < 0.05) and higher shortest path length (P < 0.001) in the alpha band than those of the control group. Also, the AIE patients' global efficiency, local efficiency, and clustering coefficients decreased in the alpha band (P < 0.001). Different types of antibodies (antibodies against ion channels, antibodies against synaptic excitatory receptors, antibodies against synaptic inhibitory receptors, and multiple antibodies positive) showed distinct graph parameters. Moreover, the graph parameters differed in the subgroups by intracranial pressure. Correlation analysis revealed that magnetic resonance imaging abnormalities were related to global efficiency, local efficiency, and clustering coefficients in the theta, alpha, and beta bands, but negatively related to the shortest path length. Conclusion: These findings add to our understanding of how brain FC and graph parameters change and how the micro- (antibodies) scales interact with the macro- (scalp EEG) scale in acute AIE. The clinical traits and subtypes of AIE may be suggested by graph properties. Further longitudinal cohort studies are needed to explore the associations between these graph parameters and recovery status, and their possible applications in AIE rehabilitation.

5.
Int J Oncol ; 61(6)2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36196896

RESUMEN

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that the miR­200c and Si­RhoE data panels in Fig. 5B on p. 1739 appeared to contain an overlap of the data, such that the data would have been derived from the same original source where the different panels were intended to show the results from differently performed experiments. The authors have re­examined their data, and realize that these data panels were inadvertently selected incorrectly; specifically, the data panel showing the results of the migration activities of A549 following transfection with Si­RhoE in Fig. 5B was incorporated incorrectly during the process of assembling this figure, and this panel contained the overlap with the miR­200c group. The revised version of Fig. 5, showing all the correct data for Fig. 5B, is presented on the next page. The authors confirm that the errors made in the presentation of Fig. 5 did not adversely affect the conclusions reported in this paper, and they are grateful to the Editor of International Journal of Oncology for granting them this opportunity to publish a Corrigendum. All the authors agree to the publication of this Corrigendum, and they also apologize to the readership for any inconvenience caused. [International Journal of Oncology 53: 1732­1742, 2018; DOI: 10.3892/ijo.2018.4493].

6.
Anticancer Drugs ; 33(9): 935-942, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36066403

RESUMEN

Chronic stress has been reported to be associated with tumor initiation and progression. But the underlying mechanism and the specific role of tumor immunity in this process are still unknown. Herein, we applied the repeated restrain stress model in C57BL/6J mice and found that the tumor growth in stressed mice was accelerated compared with that in control mice. In addition, serotonin, also called 5-hydroxytryptamine (5-HT), in the serum of stressed mice was also elevated. Sertraline, a selective serotonin reuptake inhibitor used in the clinic, can restore the serum 5-HT level in stressed mice and restrain tumor growth. We further explored the distribution of major immune cells, including B lymphocytes cells, T lymphocytes, natural killer cells, dendritic cells, tumor-associated macrophages (TAM) and regulatory T cells (Treg). We found that the infiltration of CD8 + T cells in the tumor microenvironment (TME) decreased significantly in stressed mice. And the extra 5-HT treatment could further decrease the infiltration of CD8 + T cells in the TME. The expression of IFN-γ and Granular enzyme B (GzmB) in CD8 + T cells were also dropped in the stressed mice group, whereas the expression of programmed cell death protein 1 (PD-1) on CD8 + T cells was increased. The T cell deficiency induced by stress can be reversed by sertraline, indicating its promising role in strengthening the efficacy of anti-PDL1/PD-1 immunotherapy. The present study provides new mechanistic insights into the impact of chronic stress on antitumor immunity and implicates a novel combined immunotherapy strategy for cancer patients with chronic stress.


Asunto(s)
Receptor de Muerte Celular Programada 1 , Serotonina , Animales , Linfocitos T CD8-positivos , Línea Celular Tumoral , Ratones , Ratones Endogámicos C57BL , Inhibidores Selectivos de la Recaptación de Serotonina , Sertralina/farmacología , Microambiente Tumoral
7.
Front Oncol ; 12: 938502, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091156

RESUMEN

Cholesterol metabolism is often dysregulated in cancer. Squalene monooxygenase (SQLE) is the second rate-limiting enzyme involved in cholesterol synthesis. Since the discovery of SQLE dysregulation in cancer, compelling evidence has indicated that SQLE plays a vital role in cancer initiation and progression and is a promising therapeutic target for cancer treatment. In this review, we provide an overview of the role and regulation of SQLE in cancer and summarize the updates of antitumor therapy targeting SQLE.

8.
Cell Death Dis ; 13(7): 615, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840557

RESUMEN

Aggresome formation is a protective cellular response to counteract proteasome dysfunction by sequestering misfolded proteins and reducing proteotoxic stress. Autophagic degradation of the protein aggregates is considered to be a key compensating mechanism for balancing proteostasis. However, the precise role of autophagy in proteasome inhibition-induced aggresome biogenesis remains unclear. Herein, we demonstrate that in the early stage of proteasome inhibition, the maturation of the autophagosome is suppressed, which facilitates aggresome formation of misfolded proteins. Proteasome inhibition-induced phosphorylation of SQSTM1 T269/S272 inhibits its autophagic receptor activity and promotes aggresome formation of misfolded proteins. Inhibiting SQSTM1 T269/S272 phosphorylation using Doramapimod aggravates proteasome inhibitor-mediated cell damage and tumor suppression. Taken together, our data reveal a negative effect of autophagy on aggresome biogenesis and cell damage upon proteasome inhibition. Our study suggests a novel therapeutic intervention for proteasome inhibitor-mediated tumor treatment.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas Ubiquitinadas , Autofagia , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Proteínas Ubiquitinadas/metabolismo
9.
Int J Biol Sci ; 18(4): 1695-1705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280684

RESUMEN

Ferroptosis, a new form of programmed necrosis characterized by iron-dependent lethal accumulation of lipid hydroperoxides, is associated with many human diseases. Targeting amino acid (AA) availability can selectively suppress tumor growth and has been a promising therapeutic strategy for cancer therapy. Compelling studies have indicated that AA metabolism is also involved in ferroptosis, closely regulating its initiation and execution. This manuscript systematically summarizes the latest advances of AA metabolism in regulating ferroptosis and discusses the potential combination of therapeutic strategies that simultaneously target AA metabolism and ferroptosis in cancer to eliminate tumors or limit their invasiveness.


Asunto(s)
Ferroptosis , Neoplasias , Aminoácidos/uso terapéutico , Apoptosis , Humanos , Neoplasias/metabolismo
10.
Biochem Biophys Res Commun ; 600: 60-66, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35193074

RESUMEN

p38δ is a member of p38 mitogen-activated protein kinases (MAPKs) family that displays cell- and tissue-specific expression patterns. Recent studies demonstrate that p38δ is centrally involved in several pathologic events, such as diabetes, neurodegeneration diseases, inflammatory diseases, and cancer, and suggest that it may be a potential target for diagnosis and therapy of specific diseases. A nanobody is a new type of antibody that exhibits high antigen-binding activity, solubility, stability, and easy production. This study utilized phage display to isolate nanobodies specifically against p38δ from a fully synthetic nanobody library. Two of them, nanobodies Nb13-6 and Nb13-1, display high binding activity to p38δ, less cross-reactivity with other p38 MAPKs, and high thermal and pH stabilities. Modeling and docking analysis indicated that Nb13-6 is mostly linked to the activation loop of p38δ. Furthermore, detailed studies revealed that Nb13-6 inhibited the protein kinase activity of p38δ and the growth of cancer cells. Therefore, this study provides p38δ-specific nanobodies that are promisingly exploited for diagnosing and treating p38δ-associated diseases.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Anticuerpos de Dominio Único , Proteína Quinasa 13 Activada por Mitógenos , Fosforilación , Anticuerpos de Dominio Único/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos
11.
FASEB J ; 36(1): e22121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34951719

RESUMEN

Protein aggregation and degradation via autophagy (aggrephagy) are major strategies adopted by cells to remove misfolded polypeptides when there is proteasome dysfunction. The functional protein complex consisting of heat shock protein 70 (Hsp70), cochaperone ubiquitin ligase carboxyl-terminal of Hsp70/Hsp90 interacting protein (CHIP), and co-chaperone Bcl-2-associated athanogene 3 (BAG3) has been associated with the activation of protein aggregation. However, data on the mechanisms of action of the complex in the protein degradation remains scant. Here, we report that upon proteasome stress, the M2 isoform of pyruvate kinase (PKM2) promotes the aggregation of ubiquitinated proteins and its knockout or knockdown aggravates the sensitivity of cells to proteasome inhibitors. Besides, following proteasome inhibition, PKM2 promotes the interaction of BAG3 with CHIP and HSP70. Interestingly, re-expression of loss-of-function mutants in PKM2-knockout cells showed that the regulatory function of PKM2 in this progress does not depend on the activity of glycolytic enzymes or protein kinases. Taken together, these findings demonstrate that PKM2 mediates the formation of the CHIP-HSP70-BAG3 protein complex and promotes the aggregation of ubiquitinated misfolded proteins, thus compensating for proteasome stress in cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Complejos Multiproteicos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Piruvato Quinasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Células Hep G2 , Humanos , Complejos Multiproteicos/genética , Complejo de la Endopetidasa Proteasomal/genética , Piruvato Quinasa/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Ubiquitinadas/genética
12.
Mol Cancer ; 20(1): 143, 2021 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-34742312

RESUMEN

Colorectal cancer (CRC) is a heterogeneous disease at the cellular and molecular levels. Kirsten rat sarcoma (KRAS) is a commonly mutated oncogene in CRC, with mutations in approximately 40% of all CRC cases; its mutations result in constitutive activation of the KRAS protein, which acts as a molecular switch to persistently stimulate downstream signaling pathways, including cell proliferation and survival, thereby leading to tumorigenesis. Patients whose CRC harbors KRAS mutations have a dismal prognosis. Currently, KRAS mutation testing is a routine clinical practice before treating metastatic cases, and the approaches developed to detect KRAS mutations have exhibited favorable sensitivity and accuracy. Due to the presence of KRAS mutations, this group of CRC patients requires more precise therapies. However, KRAS was historically thought to be an undruggable target until the development of KRASG12C allele-specific inhibitors. These promising inhibitors may provide novel strategies to treat KRAS-mutant CRC. Here, we provide an overview of the role of KRAS in the prognosis, diagnosis and treatment of CRC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Colorrectales/metabolismo , Terapia Combinada/efectos adversos , Terapia Combinada/métodos , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Desarrollo de Medicamentos , Regulación Neoplásica de la Expresión Génica , Humanos , Biopsia Líquida/métodos , Biopsia Líquida/normas , Técnicas de Diagnóstico Molecular , Terapia Molecular Dirigida , Mutación , Pronóstico , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sensibilidad y Especificidad , Transducción de Señal , Relación Estructura-Actividad , Resultado del Tratamiento
13.
Cell Death Discov ; 7(1): 207, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34365464

RESUMEN

The Hippo/YAP pathway plays an important role in the development of cancers. Previous studies have reported that bile acids can activate YAP (Yes Associated Protein) to promote tumorigenesis and tumor progression. Ursodeoxycholic acid (UDCA) is a long-established old drug used for cholestasis treatment. So far, the effect of UDCA on YAP signaling in colorectal cancer (CRC) is not well defined. This study means to explore relationship of UDCA and YAP in CRC. UDCA suppressed YAP signaling by activating the membrane G-protein-coupled bile acid receptor (TGR5). TGR5 mainly regulated cAMP/PKA signaling pathway to inhibit RhoA activity, thereby suppressing YAP signaling. Moreover, the restoration of YAP expression alleviated the inhibitory effect of UDCA on CRC cell proliferation. In AOM/DSS-induced CRC model, UDCA inhibited tumor growth in a concentration-dependent manner and decreased expression of YAP and Ki67. UDCA plays a distinguished role in regulating YAP signaling and CRC growth from the primary bile acids and partial secondary bile acids, demonstrating the importance of maintaining normal intestinal bile acid metabolism in cancer patients. It also presents a potential therapeutic intervention for CRC.

14.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188618, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34428515

RESUMEN

Serotonin (5-hydroxytryptamine, 5-HT) metabolism has long been linked to tumorigenesis and tumor progression. Numerous studies have shown the functions of 5-HT and its metabolites in the regulation of tumor biological processes like cell proliferation, invasion, metastasis, tumor angiogenesis and immunomodulatory through multi-step complex mechanisms. Reprogramming of 5-HT metabolism has been revealed in various tumors paving way for development of drugs that target enzymes, metabolites or receptors involved in 5-HT metabolic pathway. However, information on the role of 5-HT metabolism in cancer is scanty. This review briefly describes the main metabolic routes of 5-HT, the role of 5-HT metabolism in cancer and systematically summarizes the most recent advances in 5-HT metabolism-targeted cancer therapy.


Asunto(s)
Neoplasias/metabolismo , Serotonina/metabolismo , Humanos
15.
Cell Death Discov ; 7(1): 125, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34052835

RESUMEN

Lipid homeostasis plays a fundamental role in the development of hepatocellular carcinoma (HCC). However, the mechanisms that regulate lipid homeostasis to avoid lipotoxicity in HCC remain elusive. Here, we found high-fat diet (HFD) improved the expression of sterol o-acyltransferase1 (SOAT1) and carnitine palmitoyltransferase 1A (CPT1A) in diethylnitrosamine-induced HCC. Bioinformatic analysis showed that SOAT1-mediated fatty acid storage and CPT1A-mediated fatty acids oxidation (FAO) formed a double-negative feedback loop in HCC. We verified that SOAT1 inhibition enhanced CPT1A protein, which shuttled the released fatty acids into the mitochondria for oxidation in vivo and in vitro. Besides, we further confirmed that CPT1A inhibition converted excess fatty acids into lipid drops by SOAT1 in vitro. Simultaneously targeting SOAT1 and CPT1A by the small-molecule inhibitors avasimibe and etomoxir had synergistic anticancer efficacy in HCC in vitro and in vivo. Our study provides new mechanistic insights into the regulation of lipid homeostasis and suggests the combination of avasimibe and etomoxir is a novel strategy for HCC treatment.

16.
Cancer Sci ; 112(7): 2664-2678, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33934451

RESUMEN

Immunotherapy targeting the PD-L1/PD-1 pathway is a novel type of clinical cancer treatment, but only small subsets of patients can benefit from it because of multiple factors. PD-L1/PD-1 expression is a biomarker for predicting the efficacy of anti-PD-L1/PD-1 therapy, which highlights the importance of understanding the regulatory mechanisms of PD-L1 expression in cancer cells. Casp8 is an apical caspase protease involved in mediating cell apoptosis, but it also has multiple nonapoptotic functions. Casp8 mutations are associated with increased risks of cancer, and low expression of Casp8 is closely connected with poor prognosis in patients with cancer. In addition, mutations of Casp8 in lymphocytes also lead to human immunodeficiency, thereby causing dysfunction of the innate immune system, but the roles of Casp8 in antitumor immunity remain unclear. Here, we found that knocking down Casp8 in mouse melanoma cells promoted tumor progression in an immune system-dependent manner. Mechanistically, Casp8 induced PD-L1 degradation by upregulating TNFAIP3 (A20) expression, a ubiquitin-editing enzyme that results in PD-L1 ubiquitination. In addition, compared with Casp8fl/fl mice, mice with conditional deletion of Casp8 in natural killer (NK) cells (Ncr1iCre/+ Casp8fl/fl mice) showed a decreased frequency of IFN-γ+ and CD107a+ NK cells but an increased frequency of PD-1+ and CTLA-4+ NK cells. Melanoma cells with Casp8 knocked down exhibited sensitivity to anti-PD-1 or anti-CTLA-4 antibody treatments, particularly in Ncr1iCre/+Casp8fl/fl mice. Together, the results indicate that Casp8 induces PD-L1 degradation by upregulating A20 expression and that decreased Casp8 expression is a potential biomarker for predicting the sensitivity to anti-PD-L1/PD-1 immunotherapy.


Asunto(s)
Antígeno B7-H1/metabolismo , Caspasa 8/fisiología , Inmunoterapia Adoptiva/métodos , Melanoma/terapia , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Animales , Antígeno B7-H1/genética , Antígeno CTLA-4/metabolismo , Caspasa 8/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación hacia Abajo , Proteínas Activadoras de GTPasa/metabolismo , Interferón gamma/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Melanoma/inmunología , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , FN-kappa B/metabolismo , Ubiquitinación , Regulación hacia Arriba
17.
J Exp Clin Cancer Res ; 40(1): 173, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006301

RESUMEN

BACKGROUND: Serotonin signaling has been associated with tumorigenesis and tumor progression. Targeting the serotonin transporter to block serotonin cellular uptake confers antineoplastic effects in various tumors, including colon cancer. However, the antineoplastic mechanism of serotonin transporter inhibition and serotonin metabolism alterations in the absence of serotonin transporter have not been elucidated, especially in colon cancer, which might limit anti-tumor effects associating with targeting serotonin transporter. METHODS: The promotion in the uptake and catabolism of extracellular tryptophan and targeting serotonin transporter was detected by using quantitative reverse-transcription polymerase chain reaction, western blotting and liquid chromatography tandem mass spectrometry. Western blotting Immunoprecipitation and immunofluorescence was utilized to research the serotonylation of mTOR by serotonin and serotonin transporter inhibition. The primary mouse model, homograft model and tissue microarry was used to explore the tryptophan pathway in colon cancer. The cell viability assay, western blotting, xenograft and primary colon cancer mouse model were used to identify whether the combination of sertraline and tryptophan restriction had a synergistic effect. RESULTS: Targeting serotonin transporter through genetic ablation or pharmacological inhibition in vitro and in vivo induced a compensatory effect by promoting the uptake and catabolism of extracellular tryptophan in colon cancer. Mechanistically, targeting serotonin transporter suppressed mTOR serotonylation, leading to mTOR inactivation and increased tryptophan uptake. In turn, this process promoted serotonin biosynthesis and oncogenic metabolite kynurenine production through enhanced tryptophan catabolism. Tryptophan deprivation, or blocking its uptake by using trametinib, a MEK inhibitor, can sensitize colon cancer to selective serotonin reuptake inhibitors. CONCLUSIONS: The present study elucidated a novel feedback mechanism involved in the regulation of serotonin homeostasis and suggested innovative strategies for selective serotonin reuptake inhibitors-based treatment of colon cancer.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Triptófano/metabolismo , Triptófano/uso terapéutico , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Transducción de Señal , Transfección , Triptófano/farmacología
18.
Cancer Cell Int ; 21(1): 166, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712026

RESUMEN

BACKGROUND: Tumor metastasis is one of the leading reasons of the dismal prognosis of hepatocellular carcinoma (HCC). Epithelial-mesenchymal transition (EMT) is closely associated with tumor metastasis including HCC. The purpose of this study is to construct and validate an EMT-related gene signature for predicting the prognosis of HCC patients. METHODS: Gene expression data of HCC patients was downloaded from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was performed to found the EMT-related gene sets which were obviously distinct between normal samples and paired HCC samples. Cox regression analysis was used to develop an EMT-related prognostic signature, and the performance of the signature was evaluated by Kaplan-Meier curves and time-dependent receiver operating characteristic (ROC) curves. A nomogram incorporating the independent predictors was established. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of the hub genes in HCC cell lines, and the role of PDCD6 in the metastasis of HCC was determined by functional experiments. RESULTS: An EMT-related 5-gene signature (PDCD6, TCOF1, TRIM28, EZH2 and FAM83D) was constructed using univariate and multivariate Cox regression analysis. Based on the signature, the HCC patients were classified into high- and low-risk groups, and patients in high-risk group had a poor prognosis. Time-dependent ROC and Cox regression analyses suggested that the signature could predict HCC prognosis exactly and independently. The predictive capacity of the signature was also validated in two external cohorts. GSEA results showed that many cancer-related signaling pathways such as PI3K/Akt/mTOR pathway and TGF-ß/SMAD pathway were enriched in high-risk group. The result of qRT-PCR revealed that PDCD6, TCOF1 and FAM83D were highly expressed in HCC cancer cells. Among them, PDCD6 were found to promote cell migration and invasion. CONCLUSION: The EMT-related 5-gene signature can serve as a promising prognostic biomarker for HCC patients and may provide a novel mechanism of HCC metastasis.

19.
Anticancer Drugs ; 32(8): 793-801, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33675613

RESUMEN

Sertraline and fluoxetine are the two most commonly used selective serotonin reuptake inhibitors (SSRIs) in the treatment of depression. Accumulating evidence has revealed that SSRIs can reduce the risk of hepatocellular carcinoma (HCC), but their therapeutic effects in HCC have not yet been elucidated. Previous studies have reported that sertraline and fluoxetine can suppress the growth of gastric carcinoma, melanoma and nonsmall cell lung cancers by inhibiting the mammalian target rapamycin (mTOR) activity. In this study, we found that sertraline and fluoxetine blocked the protein kinase B (AKT)/mTOR pathway and suppressed the growth of HCC cells in vitro, in xenografts and in diethylnitrosamine/carbon tetrachloride (DEN/CCL4)-induced primary liver mouse model. Sertraline and fluoxetine can synergize with sorafenib, the first approved standard therapy for advanced HCC, to inhibit the viability of HCC cells in vitro and in vivo. In addition, the combination of sorafenib and SSRIs synergistically inhibited the effects of the AKT/mTOR pathway. These results reveal novel therapeutic effects of a combination of SSRIs and sorafenib in HCC.


Asunto(s)
Carcinoma Hepatocelular/patología , Floxuridina/farmacología , Neoplasias Hepáticas/patología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sertralina/farmacología , Sorafenib/farmacología , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cell Death Discov ; 7(1): 38, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637695

RESUMEN

Intracellular free cholesterol can be converted to cholesteryl ester and stored as lipid droplets through SOAT1-mediated esterification. Compelling evidence implicate targeting SOAT1 as a promising therapeutic strategy for cancer management. Herein, we demonstrate how targeting SOAT1 promotes YAP expression by elevating cellular cholesterol content in colon cancer cells. Results revealed that cholesterol alleviates the inhibitory effect of LRP6 on the Wnt/PCP pathway by impeding the interaction of LRP6 with FZD7. Subsequently, FZD7-mediated PCP signaling directly elevated YAP expression by activating RhoA. Nystatin-mediated cholesterol sequestration significantly inhibited YAP expression under SOAT1 inhibition. Moreover, nystatin synergized with the SOAT1 inhibitor avasimibe in suppressing the viability of colon cancer cells in vitro and in vivo. The present study provides new mechanistic insights into the functions of cholesterol metabolism on growth signaling pathways and implicates a novel strategy for cholesterol metabolic-targeted treatment of colon cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...