Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomaterials ; 301: 122245, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37467597

RESUMEN

Open vascular reconstructions such as bypass are common treatments for cardiovascular disease. Unfortunately, neointimal hyperplasia (IH) follows, leading to treatment failure for which there is no approved therapy. Here we combined the strengths of tailoring nanoplatforms for open vascular reconstructions and targeting new epigenetic mechanisms. We produced adhesive nanoparticles (ahNP) that could be pen-brushed and immobilized on the adventitia to sustainably release pinometostat, an inhibitor drug selective to the epigenetic writer DOT1L that catalyzes histone-3 lysine-79 dimethylation (H3K79me2). This treatment not only reduced IH by 76.8% in injured arteries mimicking open reconstructions in obese Zucker rats with human-like diseases but also avoided the shortcoming of endothelial impairment in IH management. In mechanistic studies, chromatin immunoprecipitation (ChIP) sequencing revealed co-enrichment of the histone mark H3K27ac(acetyl) and its reader BRD4 at the gene of aurora kinase B (AURKB), where H3K79me2 was also enriched as indicated by ChIP-qPCR. Accordingly, DOT1L co-immunoprecipitated with H3K27ac. Furthermore, the known IH driver BRD4 governed the expression of DOT1L which controlled AURKB's protein level, revealing a BRD4- > DOT1L- > AURKB axis. Consistently, AURKB-selective inhibition reduced IH. Thus, this study presents a prototype nanoformulation suited for open vascular reconstructions, and the new insights into chromatin modulators may aid future translational advances.


Asunto(s)
Adventicia , Proteínas Nucleares , Ratas , Animales , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Adventicia/metabolismo , Neointima/tratamiento farmacológico , Factores de Transcripción/metabolismo , Ratas Zucker , Epigénesis Genética , Endotelio , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Ciclo Celular/genética
2.
NPJ Regen Med ; 8(1): 29, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291182

RESUMEN

Healing of the cutaneous wound requires macrophage recruitment at the sites of injury, where chemotactic migration of macrophages toward the wound is regulated by local inflammation. Recent studies suggest a positive contribution of DNA methyltransferase 1 (Dnmt1) to macrophage pro-informatory responses; however, its role in regulating macrophage motility remains unknown. In this study, myeloid-specific depletion of Dnmt1 in mice promoted cutaneous wound healing and de-suppressed the lipopolysaccharides (LPS)-inhibited macrophage motility. Dnmt1 inhibition in macrophages eliminated the LPS-stimulated changes in cellular mechanical properties in terms of elasticity and viscoelasticity. LPS increased the cellular accumulation of cholesterol in a Dnmt1-depedent manner; cholesterol content determined cellular stiffness and motility. Lipidomic analysis indicated that Dnmt1 inhibition altered the cellular lipid homeostasis, probably through down-regulating the expression of cluster of differentiation 36 CD36 (facilitating lipid influx) and up-regulating the expression of ATP-binding cassette transporter ABCA1 (mediating lipid efflux) and sterol O-acyltransferase 1 SOAT1 (also named ACAT1, catalyzing the esterification of cholesterol). Our study revealed a Dnmt1-dependent epigenetic mechanism in the control of macrophage mechanical properties and the related chemotactic motility, indicating Dnmt1 as both a marker of diseases and a potential target of therapeutic intervention for wound healing.

3.
Dalton Trans ; 52(22): 7620-7625, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37195025

RESUMEN

A novel Ru(II) complex with a donor-acceptor-donor (D-A-D) ligand was designed and synthesized to prepare organic memory devices. The fabricated Ru(II) complex-based devices exhibited obvious bipolar resistance switching behavior with a low switching voltage (∼1.13 V) and a large ON/OFF ratio (105). The dominant switching mechanism can be explained by the distinct charge-transfer states endowed by the interaction between metals and ligands, which is verified by density functional theory (DFT) calculations. Excitingly, the device displays a much lower switching voltage than most of the previously reported metal complex based memory devices due to the intense intramolecular charge transfer caused by the strong built-in electric field in D-A systems. This work not only reveals the potential of the Ru(II) complex in resistive switching devices, but also provides new inspiration to manipulate the switching voltage at the molecular level.

4.
Heliyon ; 9(5): e16065, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206043

RESUMEN

With the emergence of various filtering technologies, the radar jamming efficiency of the technology based on radar cross section is ever lower, therefore cannot meet military requirements. In this context, the jamming technology based on attenuation mechanism has been developed and plays an increasingly important role in disturbing radar detecting. Magnetically expanded graphite (MEG) has excellent attenuation efficiency because it can cause dielectric loss as well as magnetic loss. Moreover, MEG features good impedance matching, which makes more incidence of electromagnetic waves into the material; and its multi-layer structure is conducive for electromagnetic wave reflection and absorption. In this work, the structure model of MEG was established by analyzing the layered structure of expanded graphite (EG) and the dispersion of intercalated magnetic particles. The electromagnetic parameters of thus-modeled MEG were calculated based on the equivalent medium theory; and effects of EG size, magnetic particle type and volume fraction on the attenuation performance were studied by the variational method. It is indicated that MEG with 500-µm diameter has the best attenuation effect and the highest increment of absorption cross section appears at 50% volume fraction of the magnetic particles at 2 GHz. The imaginary part of complex permeability of the magnetic material has the most significant influence on the attenuation effect of MEG. This study provides guidance for the design and application of MEG materials in disturbing radar detecting field.

5.
Mol Ther Nucleic Acids ; 31: 717-729, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36923952

RESUMEN

Epigenetically switched, proliferative vascular smooth muscle cells (SMCs) form neointima, engendering stenotic diseases. Histone-3 lysine-27 trimethylation (H3K27me3) and acetylation (H3K27ac) marks are associated with gene repression and activation, respectively. The polycomb protein embryonic ectoderm development (EED) reads H3K27me3 and also enhances its deposition, hence is a canonical gene repressor. However, herein we found an unexpected role for EED in activating the bona fide pro-proliferative gene Ccnd1 (cyclinD1). EED overexpression in SMCs increased Ccnd1 mRNA, seemingly contradicting its gene-repressing function. However, consistently, EED co-immunoprecipitated with gene-activating H3K27ac reader BRD4, and they co-occupied at both mitogen-activated Ccnd1 and mitogen-repressed P57 (bona fide anti-proliferative gene), as indicated by chromatin immunoprecipitation qPCR. These results were abolished by an inhibitor of either the EED/H3K27me3 or BRD4/H3K27ac reader function. In accordance, elevating BRD4 increased H3K27me3. In vivo, while EED was upregulated in rat and human neointimal lesions, selective EED inhibition abated angioplasty-induced neointima and reduced cyclinD1 in rat carotid arteries. Thus, results uncover a previously unknown role for EED in Ccnd1 activation, likely via its cooperativity with BRD4 that enhances each other's reader function; i.e., activating pro-proliferative Ccnd1 while repressing anti-proliferative P57. As such, this study confers mechanistic implications for the epigenetic intervention of neointimal pathology.

6.
Bioact Mater ; 26: 52-63, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36875050

RESUMEN

Abdominal aortic aneurysm (AAA) is a progressive aortic dilatation, causing ∼80% mortality upon rupture. Currently, there is no approved drug therapy for AAA. Surgical repairs are invasive and risky and thus not recommended to patients with small AAAs which, however, account for ∼90% of the newly diagnosed cases. It is therefore a compelling unmet clinical need to discover effective non-invasive strategies to prevent or slow down AAA progression. We contend that the first AAA drug therapy will only arise through discoveries of both effective drug targets and innovative delivery methods. There is substantial evidence that degenerative smooth muscle cells (SMCs) orchestrate AAA pathogenesis and progression. In this study, we made an exciting finding that PERK, the endoplasmic reticulum (ER) stress Protein Kinase R-like ER Kinase, is a potent driver of SMC degeneration and hence a potential therapeutic target. Indeed, local knockdown of PERK in elastase-challenged aorta significantly attenuated AAA lesions in vivo. In parallel, we also conceived a biomimetic nanocluster (NC) design uniquely tailored to AAA-targeting drug delivery. This NC demonstrated excellent AAA homing via a platelet-derived biomembrane coating; and when loaded with a selective PERK inhibitor (PERKi, GSK2656157), the NC therapy conferred remarkable benefits in both preventing aneurysm development and halting the progression of pre-existing aneurysmal lesions in two distinct rodent models of AAA. In summary, our current study not only establishes a new intervention target for mitigating SMC degeneration and aneurysmal pathogenesis, but also provides a powerful tool to facilitate the development of effective drug therapy of AAA.

7.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34810252

RESUMEN

Vascular endothelial cells are exposed to shear stresses with disturbed vs. laminar flow patterns, which lead to proinflammatory vs. antiinflammatory phenotypes, respectively. Effective treatment against endothelial inflammation and the consequent atherogenesis requires the identification of new therapeutic molecules and the development of drugs targeting these molecules. Using Connectivity Map, we have identified vitexin, a natural flavonoid, as a compound that evokes the gene-expression changes caused by pulsatile shear, which mimics laminar flow with a clear direction, vs. oscillatory shear (OS), which mimics disturbed flow without a clear direction. Treatment with vitexin suppressed the endothelial inflammation induced by OS or tumor necrosis factor-α. Administration of vitexin to mice subjected to carotid partial ligation blocked the disturbed flow-induced endothelial inflammation and neointimal formation. In hyperlipidemic mice, treatment with vitexin ameliorated atherosclerosis. Using SuperPred, we predicted that apurinic/apyrimidinic endonuclease1 (APEX1) may directly interact with vitexin, and we experimentally verified their physical interactions. OS induced APEX1 nuclear translocation, which was inhibited by vitexin. OS promoted the binding of acetyltransferase p300 to APEX1, leading to its acetylation and nuclear translocation. Functionally, knocking down APEX1 with siRNA reversed the OS-induced proinflammatory phenotype, suggesting that APEX1 promotes inflammation by orchestrating the NF-κB pathway. Animal experiments with the partial ligation model indicated that overexpression of APEX1 negated the action of vitexin against endothelial inflammation, and that endothelial-specific deletion of APEX1 ameliorated atherogenesis. We thus propose targeting APEX1 with vitexin as a potential therapeutic strategy to alleviate atherosclerosis.


Asunto(s)
Apigenina/genética , Apigenina/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Células Endoteliales/metabolismo , Transporte Activo de Núcleo Celular , Animales , Aterosclerosis , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación , Ratones , Fenotipo , Fosforilación , Unión Proteica , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Factores de Transcripción p300-CBP/metabolismo
8.
Materials (Basel) ; 14(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34683813

RESUMEN

In this study, a comb-type capacitive accelerometer based on a silicon carbide (SiC) microstructure is presented and investigated by the finite element method (FEM). It has the advantages of low weight, small volume, and low cross-coupling. Compared with silicon(111) accelerometers with the same structure, it has a higher natural frequency. When the accelerometer vibrates, its resistive force consists of two main components: a viscous damping and an elastic damping force. It was found that viscous damping dominates at low frequency, and elastic damping dominates at high frequency. The second-order linear system of the accelerometer was analyzed in the time-frequency domain, and its dynamic characteristics were best when the gap between the capacitive plates was 1.23 µm. The range of this accelerometer was 0-100 g, which is 1.64 times that of a silicon(111) accelerometer with the same structure. In addition, the accelerometer could work normally at temperatures of up to 1200 °C, which is much higher than the working temperatures of silicon devices. Therefore, the proposed accelerometer showed superior performance compared to conventional silicon-based sensors for inertial measurements.

9.
Micromachines (Basel) ; 12(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383897

RESUMEN

The liquid crystal-based method is a new technology developed for flow visualizations and measurements at microscale with great potentials. It is the priority to study the flow characteristics before implementation of such a technology. A numerical analysis has been applied to solve the simplified dimensionless two-dimensional Leslie-Ericksen liquid crystal dynamic equation. This allows us to analyze the coupling effect of the LC's director orientation and flow field. We will be discussing two classic shear flow cases at microscale, namely Couette and Poiseuille flow. In both cases, the plate drag speed in the state of Couette flow are varied as well as the pressure gradients in Poiseuille flow state are changed to study their effects on the flow field distributions. In Poiseuille flow, with the increase of applied pressure gradient, the influence of backflow significantly affects the flow field. Results show that the proposed method has great advantages on measurement near the wall boundaries which could complement to the current adopted flow measurement technique. The mathematical model proposed in this article could be of great potentials in the development of the quantitatively flow measurement technology.

10.
J Mol Cell Cardiol ; 128: 11-24, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30659837

RESUMEN

Macrophage-mediated inflammatory responses occur throughout all stages of atherosclerosis. DNA methylation is one of the critical epigenetic mechanisms and is associated with the development of atherosclerosis. The underlying mechanism of epigenetic regulation of macrophage inflammation (M1 activation) remains unclear. Here we aim to study the role of DNA methyltransferase 1 (DNMT1) in modulating macrophage inflammation and atherosclerosis. DNMT1 expression is up-regulated in THP-1-derived macrophages upon treatment with lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Overexpression of DNMT1 promotes the LPS- and IFN-γ-induced M1 activation whereas inhibition of DNMT1 attenuates it. Consistently, DNMT1 expression is elevated in macrophages in atherosclerotic plaques from human and mouse specimens; compared with the Dnmt1wild-type, myeloid Dnmt1 deficiency in mice in an Apolipoprotein E (ApoE) knockout background or receiving AAV-PSCK9 injection and carotid partial ligation results in ameliorated atheroma formation and suppressed plaque inflammation. The promoter regions of atheroprotective Krüppel-like factor 4 (KLF4) are hypermethylated in M1- activated macrophages. DNMT1 down-regulates the expression of KLF4, probably through catalyzing DNA methylation of the promoter regions of KLF4. Gain- and loss-of function study of KLF4 indicates that the DNMT1-mediated macrophage M1 activation is dependent on KLF4. Our data demonstrate a proatherogenic role for DNMT1 as a defining factor in macrophage inflammation both in vitro and in vivo. DNMT1 promotes macrophage M1 activation by suppressing KLF4 expression. Thus macrophage-specific DNMT1 inhibition may provide an attractive therapeutic potential to prevent or reduce atherosclerosis.


Asunto(s)
Aterosclerosis/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , Inflamación/genética , Factores de Transcripción de Tipo Kruppel/genética , Animales , Apolipoproteínas E/genética , Aterosclerosis/patología , Metilación de ADN/genética , Epigénesis Genética , Regulación de la Expresión Génica/genética , Humanos , Inflamación/patología , Interferón gamma/genética , Factor 4 Similar a Kruppel , Lipopolisacáridos/farmacología , Macrófagos/patología , Ratones , Ratones Noqueados , Mutación , Regiones Promotoras Genéticas/genética
11.
Nanotechnology ; 29(37): 375703, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-29926811

RESUMEN

Fe3O4@SiO2@Ag ternary hybrid nanoparticles were synthesized via a facile seed-mediated growth route. X-ray diffraction, transmission electron microscopy and vibrating sample magnetometer measurements were used to characterize the as-prepared product. The results indicated that the nanoparticles exhibited excellent magnetic properties and an extremely dense structure with Ag layer thicknesses of 30, 40, and 50 nm. Furthermore, the microwave shielding effectiveness exceeded 20 dB over almost the entire frequency range (2-18 GHz), and the effectiveness obviously improved as the thickness of the Ag layer increased. In addition, the IR extinction coefficient of the nanoparticles was calculated by a finite-difference time-domain method, which showed that the nanoparticles can inherit the extinction performance of pure silver when the Ag shell thickness was 30 nm. Specifically, after assembling into chains, the peak position of the IR extinction curves displayed a significant redshift and an intensity increase as the number of nanoparticles increased in the chain, which dramatically promoted the IR extinction capability. As a result, the Fe3O4@SiO2@Ag nanoparticles are expected to be used as a new multispectral interference material.

12.
Sensors (Basel) ; 18(5)2018 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-29734796

RESUMEN

Effective shielding area is a crucial indicator for the evaluation of the infrared smoke-obscuring effectiveness on the battlefield. The conventional methods for assessing the shielding area of the smoke screen are time-consuming and labor intensive, in addition to lacking precision. Therefore, an efficient and convincing technique for testing the effective shielding area of the smoke screen has great potential benefits in the smoke screen applications in the field trial. In this study, a thermal infrared sensor with a mid-wavelength infrared (MWIR) range of 3 to 5 μm was first used to capture the target scene images through clear as well as obscuring smoke, at regular intervals. The background subtraction in motion detection was then applied to obtain the contour of the smoke cloud at each frame. The smoke transmittance at each pixel within the smoke contour was interpolated based on the data that was collected from the image. Finally, the smoke effective shielding area was calculated, based on the accumulation of the effective shielding pixel points. One advantage of this approach is that it utilizes only one thermal infrared sensor without any other additional equipment in the field trial, which significantly contributes to the efficiency and its convenience. Experiments have been carried out to demonstrate that this approach can determine the effective shielding area of the field infrared smoke both practically and efficiently.

13.
Sci Rep ; 7(1): 14996, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118325

RESUMEN

The earliest atherosclerotic lesions preferentially develop in arterial regions experienced disturbed blood flow, which induces endothelial expression of pro-atherogenic genes and the subsequent endothelial dysfunction. Our previous study has demonstrated an up-regulation of DNA methyltransferase 1 (DNMT1) and a global hypermethylation in vascular endothelium subjected to disturbed flow. Here, we determined that DNMT1-specific inhibition in arterial wall ameliorates the disturbed flow-induced atherosclerosis through, at least in part, targeting cell cycle regulator cyclin A and connective tissue growth factor (CTGF). We identified the signaling pathways mediating the flow-induction of DNMT1. Inhibition of the mammalian target of rapamycin (mTOR) suppressed the DNMT1 up-regulation both in vitro and in vivo. Together, our results demonstrate that disturbed flow influences endothelial function and induces atherosclerosis in an mTOR/DNMT1-dependent manner. The conclusions obtained from this study might facilitate further evaluation of the epigenetic regulation of endothelial function during the pathological development of atherosclerosis and offer novel prevention and therapeutic targets of this disease.


Asunto(s)
Aterosclerosis/patología , Endotelio Vascular/patología , Epigénesis Genética/fisiología , Hemorreología/fisiología , Animales , Arterias/patología , Arterias/fisiopatología , Aterosclerosis/genética , Aterosclerosis/fisiopatología , Bovinos , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Ciclina A/genética , Ciclina A/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN/fisiología , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Regiones Promotoras Genéticas/genética , Serina-Treonina Quinasas TOR/metabolismo
14.
Res Vet Sci ; 111: 81-84, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28064023

RESUMEN

Gamma-interferon-inducible lysosomal thiol reductase (GILT) is a key enzyme in the antigen processing and presentation pathway whereby it reduces disulfide bonds at an acidic pH. In this study, a homolog of GILT from guinea pigs (designated gpGILT) was identified and characterized using bioinformatic methods and bioactivity assays. The open reading frame of gpGILT is 705bp in length and encodes 234 amino acids, with a putative molecular weight of about 25.85kDa. The structure of gpGILT is similar to those of humans and zebrafish, containing six introns and seven exons. The deduced primary structure of the gpGILT protein includes all of the typical features of other known GILT proteins, including an active-site motif, CXXC, a GILT signature sequence, CQHGX2ECX2NX4C, three potential Asn-linked glycosylation sites, and six other conserved cysteines. The predicted tertiary structures of gpGILT, human GILT, and mouse GILT are quite similar in shape and positional arrangement of the key motifs modeled on the same template. Amino acid sequence-based alignment and phylogenetic analysis showed that gpGILT is most closely related to that from the rat, with an identity of 68.40%. Additionally, the constitutive expression and immune response to lipopolysaccharide (LPS) challenge of gpGILT were tested using real-time quantitative polymerase chain reaction. A tissue-specific expression pattern in selected tissues and remarkable up-regulation of gpGILT mRNA in spleen and blood within 12h of LPS stimulation were observed, suggesting that GILT functions as an immunological surveillance-related factor in both innate and adaptive immunity. Soluble recombinant gpGILT produced in E. coli could reduce the interchain disulfide bonds of IgG in an acidic reaction system in vitro, suggesting thiol reductase activity in antigen processing. The results of this study provide a better understanding of the molecular characteristics of gpGILT and are a useful reference for further investigation of its involvement in antigen processing and immunological surveillance using the laboratory guinea pig.


Asunto(s)
Cobayas/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Cobayas/metabolismo , Interferón gamma/metabolismo , Lipopolisacáridos/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
15.
IEEE Trans Pattern Anal Mach Intell ; 38(12): 2345-2358, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27824580

RESUMEN

We consider a problem of clustering a sequence of multinomial observations by way of a model selection criterion. We propose a form of a penalty term for the model selection procedure. Our approach subsumes both the conventional AIC and BIC criteria but also extends the conventional criteria in a way that it can be applicable also to a sequence of sparse multinomial observations, where even within a same cluster, the number of multinomial trials may be different for different observations. In addition, as a preliminary estimation step to maximum likelihood estimation, and more generally, to maximum Lq estimation, we propose to use reduced rank projection in combination with non-negative factorization. We motivate our approach by showing that our model selection criterion and preliminary estimation step yield consistent estimates under simplifying assumptions. We also illustrate our approach through numerical experiments using real and simulated data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA