Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(33): e2404705, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38884448

RESUMEN

High humidity in extremely cold weather can undermine the insulation capability of the clothing, imposing serious life risks. Current clothing insulation technologies have inherent deficiencies in terms of insulation efficiency and humidity adaptability. Here, humidity-stimulated self-heating clothing using aluminum core-liquid metal shell microparticles (Al@LM-MPs) as the filler is reported. Al@LM-MPs exhibit a distinctive capability to react to water molecules in the air to generate heat, exhibiting remarkable sensitivity across a broad temperature range. This ability leads to the creation of intelligent clothing capable of autonomously responding to extreme cold and wet weather conditions, providing both enduring heat retention and insulation capabilities.

2.
Biosens Bioelectron ; 257: 116339, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688231

RESUMEN

Pairing droplet microfluidics and CRISPR/Cas12a techniques creates a powerful solution for the detection and quantification of nucleic acids at the single-molecule level, due to its specificity, sensitivity, and simplicity. However, traditional water-in-oil (W/O) single emulsion (SE) droplets often present stability issues, affecting the accuracy and reproducibility of assay results. As an alternative, water-in-oil-in-water (W/O/W) double emulsion (DE) droplets offer superior stability and uniformity for droplet digital assays. Moreover, unlike SE droplets, DE droplets are compatible with commercially available flow cytometry instruments for high-throughput analysis. Despite these advantages, no study has demonstrated the use of DE droplets for CRISPR-based nucleic acid detection. In our study, we conducted a comparative analysis to assess the performance of SE and DE droplets in quantitative detection of human papillomavirus type 18 (HPV18) DNA based on CRISPR/Cas12a. We evaluated the stability of SEs and DEs by examining size variation, merging extent, and content interaction before and after incubation at different temperatures and time points. By integrating DE droplets with flow cytometry, we achieved high-throughput and high-accuracy CRISPR/Cas12a-based quantification of target HPV18 DNA. The DE platform, when paired with CRISPR/Cas12a and flow cytometry techniques, emerges as a reliable tool for absolute quantification of nucleic acid biomarkers.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Emulsiones , Emulsiones/química , Humanos , Técnicas Biosensibles/métodos , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/aislamiento & purificación , Citometría de Flujo , ADN Viral/análisis , ADN Viral/genética , Ácidos Nucleicos/química , Ácidos Nucleicos/análisis
4.
Biosens Bioelectron ; 246: 115918, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38086309

RESUMEN

Electrochemical aptamer-based (E-AB) sensors offer exciting potential for real-time tracking of various biomarkers, such as proteins and small molecules, due to their exceptional selectivity and adaptability. However, most E-AB sensors rely on planar gold structures, which inherently limit their sensitivity and operational stability for continuous monitoring of biomarkers. Although gold nanostructures have recently enhanced E-AB sensor performance, no studies have explored the combination of gold nanostructure with other types of nanomaterials for continuous molecular monitoring. To fill this gap, we employed gold nanoparticles and MXene Ti3C2 (AuNPs@MXene), a versatile nanocomposite, in designing an E-AB sensor targeted at vascular endothelial growth factor (VEGF), a crucial human signaling protein. Remarkably, the AuNPs@MXene nanocomposite achieved over thirty-fold and half-fold increases in active surface area compared to bare and AuNPs-modified gold electrodes, respectively, significantly elevating the analytical capabilities of E-AB sensors during continuous operation. After a systematic optimization and characterization process, the newly developed E-AB sensor, powered by AuNPs@MXene nanocomposite, demonstrated both enhanced stability and heightened sensitivity. Overall, our findings open new avenues for the incorporation of nanocomposites in E-AB sensor design, enabling the creation of more sensitive and durable real-time monitoring systems.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Nanocompuestos , Humanos , Oro/química , Factor A de Crecimiento Endotelial Vascular , Nanopartículas del Metal/química , Nanocompuestos/química , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas , Electrodos
5.
Lab Chip ; 24(2): 244-253, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38059468

RESUMEN

Microalgae not only play a vital role in the ecosystem but also hold promising commercial applications. Conventional methods of detecting and monitoring microalgae rely on field sampling followed by transportation to the laboratory for manual analysis, which is both time-consuming and laborious. Although machine learning (ML) algorithms have been introduced for microalgae detection in the laboratory, no integrated platform approach has yet emerged to enable real-time, on-site sampling and analysing. To solve this problem, here, we develop an automated and intelligent microfluidic platform (AIMP) that can offer automated system control, intelligent data analysis, and user interaction, providing an economical and portable solution to alleviate the drawbacks of conventional methods for microalgae detection and monitoring. We demonstrate the feasibility of the AIMP by detecting and classifying four microalgal species (Cosmarium, Closterium, Micrasterias, and Haematococcus Pluvialis) that exhibit varying sizes (from a few to hundreds of microns) and morphologies. The trained microalgae species detection network (MSDN, based on YOLOv5 architecture) achieves a high overall mean average precision at 0.5 intersection-over-union (mAP@0.5) of 92.8%. Furthermore, the versatility of the AIMP is demonstrated by long-term monitoring of astaxanthin production from Haematococcus Pluvialis over a period of 30 days. The AIMP achieved 97.5% accuracy in the detection of Haematococcus Pluvialis and 96.3% in further classification based on astaxanthin accumulation. This study opens up a new path towards microalgae detection and monitoring using portable intelligent devices, providing new ideas to accelerate progress in the ecological studies and commercial exploitation of microalgae.


Asunto(s)
Chlorophyceae , Microalgas , Ecosistema , Microfluídica , Xantófilas
6.
Angew Chem Int Ed Engl ; 63(3): e202315552, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38038248

RESUMEN

Droplet-based microfluidics represents a disruptive technology in the field of chemistry and biology through the generation and manipulation of sub-microlitre droplets. To avoid droplet coalescence, fluoropolymer-based surfactants are commonly used to reduce the interfacial tension between two immiscible phases to stabilize droplet interfaces. However, the conventional preparation of fluorosurfactants involves multiple steps of conjugation reactions between fluorinated and hydrophilic segments to form multiple-block copolymers. In addition, synthesis of customized surfactants with tailored properties is challenging due to the complex synthesis process. Here, we report a highly efficient synthetic method that utilizes living radical polymerization (LRP) to produce fluorosurfactants with tailored functionalities. Compared to the commercialized surfactant, our surfactants outperform in thermal cycling for polymerase chain reaction (PCR) testing, and exhibit exceptional biocompatibility for cell and yeast culturing in a double-emulsion system. This breakthrough synthetic approach has the potential to revolutionize the field of droplet-based microfluidics by enabling the development of novel designs that generate droplets with superior stability and functionality for a wide range of applications.


Asunto(s)
Microfluídica , Tensoactivos , Microfluídica/métodos , Polimerizacion , Tensoactivos/química , Emulsiones , Polímeros de Fluorocarbono
7.
Nat Commun ; 14(1): 7815, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016940

RESUMEN

4D printing combines 3D printing with nanomaterials to create shape-morphing materials that exhibit stimuli-responsive functionalities. In this study, reversible addition-fragmentation chain transfer polymerization agents grafted onto liquid metal nanoparticles are successfully employed in ultraviolet light-mediated stereolithographic 3D printing and near-infrared light-responsive 4D printing. Spherical liquid metal nanoparticles are directly prepared in 3D-printed resins via a one-pot approach, providing a simple and efficient strategy for fabricating liquid metal-polymer composites. Unlike rigid nanoparticles, the soft and liquid nature of nanoparticles reduces glass transition temperature, tensile stress, and modulus of 3D-printed materials. This approach enables the photothermal-induced 4D printing of composites, as demonstrated by the programmed shape memory of 3D-printed composites rapidly recovering to their original shape in 60 s under light irradiation. This work provides a perspective on the use of liquid metal-polymer composites in 4D printing, showcasing their potential for application in the field of soft robots.

8.
Skin Res Technol ; 29(9): e13419, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37753685

RESUMEN

BACKGROUND: Pyroptosis has been implicated in the development of human diseases, including vitiligo. TanshinoneIIA has been confirmed to play anti-vitiligo role. However, whether tanshinoneIIA inhibits vitiligo progression via regulating cell pyroptosis remains unclear. METHODS: Hydrogen peroxide (H2 O2 )-induced melanocytes were used to mimic vitiligo cell model in vitro. Cell viability was assessed by cell counting kit 8 assay, and reactive oxygen species (ROS) production was detected by DCFH-DA staining. Nod-like receptor protein 3 (NLRP3) expression was detected by quantitative real-time PCR, western blot and immunofluorescence staining. Cell pyroptosis was measured using flow cytometry, and the contents of interleukin-1ß and interleukin-18 were determined by ELISA. Besides, the protein levels of apoptosis-associated speck-like protein containing CARD (ASC) and cleaved-Caspase-1 were examined by western blot analysis. RESULTS: H2 O2 could induce ROS production, NLRP3 expression and pyroptosis in melanocytes. TanshinoneIIA inhibited ROS production, pyroptosis, and the expression of NLRP3, ASC and cleaved-caspase-1 in H2 O2 -induced melanocytes. Compared with the function of ROS inhibitor (NAC), tanshinoneIIA acted as a ROS scavenger to relieve melanocyte pyroptosis. In addition, NLRP3 inhibitor (MCC950) also could aggravate the inhibition effect of tanshinoneIIA on melanocyte pyroptosis. CONCLUSION: TanshinoneIIA suppressed melanocyte pyroptosis probably through modulating the ROS/NLRP3 signaling axis, which provides the evidence for therapeutic effect in vitiligo.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Vitíligo , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR , Especies Reactivas de Oxígeno , Inflamasomas/metabolismo , Inflamasomas/farmacología , Piroptosis , Vitíligo/tratamiento farmacológico , Caspasa 1/metabolismo , Caspasa 1/farmacología
9.
Biosens Bioelectron ; 235: 115414, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37236012

RESUMEN

Biopotential signals, like electrocardiography (ECG), electromyography (EMG), and electroencephalography (EEG), can help diagnose cardiological, musculoskeletal and neurological disorders. Dry silver/silver chloride (Ag/AgCl) electrodes are commonly used to obtain these signals. While a conductive hydrogel can be added to Ag/AgCl electrodes to improve the contact and adhesion between the electrode and the skin, dry electrodes are prone to movement. Considering that the conductive hydrogel dries over time, the use of these electrodes often creates an imbalanced skin-electrode impedance and a number of sensing issues in the front-end analogue circuit. This issue can be extended to several other electrode types that are commonly in use, in particular, for applications with a need for long-term wearable monitoring such as ambulatory epilepsy monitoring. Liquid metal alloys, such as eutectic gallium indium (EGaIn), can address key critical requirements around consistency and reliability but present challenges on low viscosity and the risk of leakage. To solve these problems, here, we demonstrate the use of a non-eutectic Ga-In alloy as a shear-thinning non-Newtonian fluid to offer superior performance to commercial hydrogel electrodes, dry electrodes, and conventional liquid metals for electrography measurements. This material has high viscosity when still and can flow like a liquid metal when sheared, preventing leakage while allowing the effective fabrication of electrodes. Moreover, the Ga-In alloy not only has good biocompatibility but also offers an outstanding skin-electrode interface, allowing for the long-term acquisition of high-quality biosignals. The presented Ga-In alloy is a superior alternative to conventional electrode materials for real-world electrography or bioimpedance measurement.


Asunto(s)
Técnicas Biosensibles , Reproducibilidad de los Resultados , Electrodos , Impedancia Eléctrica , Aleaciones , Indio , Electrocardiografía , Hidrogeles
10.
11.
Sci Adv ; 9(4): eadf1141, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36696510

RESUMEN

Materials with programmable conductivity and stiffness offer new design opportunities for next-generation engineered systems in soft robotics and electronic devices. However, existing approaches fail to harness variable electrical and mechanical properties synergistically and lack the ability to self-respond to environmental changes. We report an electro-mechano responsive Field's metal hybrid elastomer exhibiting variable and tunable conductivity, strain sensitivity, and stiffness. By synergistically harnessing these properties, we demonstrate two applications with over an order of magnitude performance improvement compared to state-of-the-art, including a self-triggered multiaxis compliance compensator for robotic manipulators, and a resettable, highly compact, and fast current-limiting fuse with an adjustable fusing current. We envisage that the extraordinary electromechanical properties of our hybrid elastomer will bring substantial advancements in resilient robotic systems, intelligent instruments, and flexible electronics.

12.
Soft Matter ; 19(7): 1293-1299, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36524440

RESUMEN

Precise manipulation of liquid metal (LM) droplets possesses the potential to enable a wide range of applications in reconfigurable electronics, robotics, and microelectromechanical systems. Although a variety of methods have been explored to actuate LM droplets on a 2D plane, versatile 3D manipulation remains a challenge due to the difficulty in overcoming their heavy weight. Here, foam-core liquid metal (FCLM) droplets that can maintain the surface properties of LM while significantly reducing the density are developed, enabling 3D manipulation in an electrolyte. The FCLM droplet is fabricated by coating LM on the surface of a copper-grafted foam sphere. The actuation of the FCLM droplet is realized by electrically inducing Marangoni flow on the LM surface. Two motion modes of the FCLM droplet are observed and studied and the actuation performance is characterized. Multiple FCLM droplets can be readily controlled to form 3D structures, demonstrating their potential to be further developed to form collaborative robots for enabling wider applications.

13.
Biosens Bioelectron ; 222: 114944, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36470061

RESUMEN

The effective analysis of the basic structure and functional information of bioparticles are of great significance for the early diagnosis of diseases. The synergism between microfluidics and particle manipulation/detection technologies offers enhanced system integration capability and test accuracy for the detection of various bioparticles. Most microfluidic detection platforms are based on optical strategies such as fluorescence, absorbance, and image recognition. Although optical microfluidic platforms have proven their capabilities in the practical clinical detection of bioparticles, shortcomings such as expensive components and whole bulky devices have limited their practicality in the development of point-of-care testing (POCT) systems to be used in remote and underdeveloped areas. Therefore, there is an urgent need to develop cost-effective non-optical microfluidic platforms for bioparticle detection that can act as alternatives to optical counterparts. In this review, we first briefly summarise passive and active methods for bioparticle manipulation in microfluidics. Then, we survey the latest progress in non-optical microfluidic strategies based on electrical, magnetic, and acoustic techniques for bioparticle detection. Finally, a perspective is offered, clarifying challenges faced by current non-optical platforms in developing practical POCT devices and clinical applications.


Asunto(s)
Técnicas Biosensibles , Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Pruebas en el Punto de Atención , Sistemas de Atención de Punto , Dispositivos Laboratorio en un Chip
14.
Science ; 378(6620): 594-595, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36356152

RESUMEN

A stretchable conductive circuit is formed using a liquid metal-polymer composite.

15.
iScience ; 25(12): 105495, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36419853

RESUMEN

Crack control strategies have been proven very useful for enhancing the stretchability of metal film-based stretchable conductors. However, existing strategies often suffer from the drawbacks of complicated preparation and predefined effective directions. Here, we propose a crack compensation strategy for preparing conductors featured with high stretchability by using liquid metal microparticles (LMMPs)-embedded polydimethylsiloxane (PDMS) as the substrate with a thin film of gold (Au) sputtered on the surface. LMMPs can be elongated to connect the cracked Au film upon stretching, which can form a conductive "island-tunnel" (IT) architecture to compensate for the cracks and maintain the conductivity. The high performance of the stretchable conductor is demonstrated by using it as electrodes to record surface electromyography of human brachioradialis and monitor electrocorticography signals of a rat in normal and epileptic states. The developed strategy shows the potential to provide a new perspective for the fabrication of flexible electronics.

16.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432309

RESUMEN

Flexible pressure sensors based on polymer elastomers filled with conductive fillers show great advantages in their applications in flexible electronic devices. However, integratable high-sensitivity pressure sensors remain understudied. This work improves the conductivity and sensitivity of PDMS-Fe/Ni piezoresistive composites by introducing silver flakes and magnetic-assisted alignment techniques. As secondary fillers, silver flakes with high aspect ratios enhance the conductive percolation network in composites. Meanwhile, a magnetic field aligns ferromagnetic particles to further improve the conductivity and sensitivity of composites. The resistivity of the composite decreases sharply by 1000 times within a tiny compression strain of 1%, indicating excellent sensing performance. On the basis of this, we demonstrate an integratable miniature pressure sensor with a small size (2 × 2 × 1 mm), high sensitivity (0.966 kPa-1), and wide sensing range (200 kPa). Finally, we develop a flexible E-skin system with 5 × 5 integratable sensor units to detect pressure distribution, which shows rapid real-time response, high resolution, and high sensitivity.

17.
J Mater Chem B ; 10(37): 7473-7490, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35993266

RESUMEN

3D printing technology, otherwise known as additive manufacturing, has provided a promising tool for manufacturing customized biomaterials for tissue engineering and regenerative medicine applications. A vast variety of biomaterials including metals, ceramics, polymers, and composites are currently being used as base materials in 3D printing. In recent years, nanomaterials have been incorporated into 3D printing polymers to fabricate innovative, versatile, multifunctional hybrid materials that can be used in many different applications within the biomedical field. This review focuses on recent advances in novel hybrid biomaterials composed of nanomaterials and 3D printing technologies for biomedical applications. Various nanomaterials including metal-based nanomaterials, metal-organic frameworks, upconversion nanoparticles, and lipid-based nanoparticles used for 3D printing are presented, with a summary of the mechanisms, functional properties, advantages, disadvantages, and applications in biomedical 3D printing. To finish, this review offers a perspective and discusses the challenges facing the further development of nanomaterials in biomedical 3D printing.


Asunto(s)
Estructuras Metalorgánicas , Nanoestructuras , Materiales Biocompatibles , Lípidos , Polímeros , Impresión Tridimensional
18.
ACS Appl Nano Mater ; 5(5): 5959-5971, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35655929

RESUMEN

Liquid metal nanoparticles (LMNPs) have recently attracted much attention as soft functional materials for various biorelated applications. Despite the fact that several reports demonstrate highly stable LMNPs in aqueous solutions or organic solvents, it is still challenging to stabilize LMNPs in biological media with complex ionic environments. LMNPs grafted with functional polymers (polymers/LMNPs) have been fabricated for maintaining their colloidal and chemical stability; however, to the best of our knowledge, no related work has been conducted to systematically investigate the effect of anchoring groups on the stability of LMNPs. Herein, various anchoring groups, including phosphonic acids, trithiolcarbonates, thiols, and carboxylic acids, are incorporated into brush polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization to graft LMNPs. Both the colloidal and chemical stability of such polymer/LMNP systems are then investigated in various biological media. Moreover, the influence of multidentate ligands is also investigated by incorporating different numbers of carboxylic or phosphonic acid into the brush polymers. We discover that increasing the number of anchoring groups enhances the colloidal stability of LMNPs, while polymers bearing phosphonic acids provide the optimum chemical stability for LMNPs due to surface passivation. Thus, polymers bearing multidentate phosphonic acids are desirable to decorate LMNPs to meet complex environments for biological studies.

19.
Analyst ; 147(13): 2895-2917, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35611964

RESUMEN

Flow cytometry has proven its capability for rapid and quantitative analysis of individual cells and the separation of targeted biological samples from others. The emerging microfluidics technology makes it possible to develop portable microfluidic diagnostic devices for point-of-care testing (POCT) applications. Microfluidic flow cytometry (MFCM), where flow cytometry and microfluidics are combined to achieve similar or even superior functionalities on microfluidic chips, provides a powerful single-cell characterisation and sorting tool for various biological samples. In recent years, researchers have made great progress in the development of the MFCM including focusing, detecting, and sorting subsystems, and its unique capabilities have been demonstrated in various biological applications. Moreover, liquid biopsy using blood can provide various physiological and pathological information. Thus, biomarkers from blood are regarded as meaningful circulating transporters of signal molecules or particles and have great potential to be used as non (or minimally)-invasive diagnostic tools. In this review, we summarise the recent progress of the key subsystems for MFCM and its achievements in blood-based biomarker analysis. Finally, foresight is offered to highlight the research challenges faced by MFCM in expanding into blood-based POCT applications, potentially yielding commercialisation opportunities.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Biomarcadores , Citometría de Flujo , Dispositivos Laboratorio en un Chip , Pruebas en el Punto de Atención
20.
Adv Sci (Weinh) ; 9(11): e2105289, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35128845

RESUMEN

The ability to control interfacial tension electrochemically is uniquely available for liquid metals (LMs), in particular gallium-based LM alloys. This imparts them with excellent locomotion and deformation capabilities and enables diverse applications. However, electrochemical oxidation of LM is a highly dynamic process, which often induces Marangoni instabilities that make it almost impossible to elongate LM and manipulate its morphology directly and precisely on a 2D plane without the assistance of other patterning methods. To overcome these limitations, this study investigates the use of an LM-iron (Fe) particle mixture that is capable of suppressing instabilities during the electrochemical oxidation process, thereby allowing for superelongation of the LM core of the mixture to form a thin wire that is tens of times of its original length. More importantly, the elongated LM core can be manipulated freely on a 2D plane to form complex patterns. Eliminating Marangoni instabilities also allows for the effective spreading and filling of the LM-Fe mixture into molds with complex structures and small features. Harnessing these excellent abilities, a channel-less patterning method for fabricating elastomeric wearable sensors is demonstrated to detect motions. This study shows the potential for developing functional and flexible structures of LM with superior performance.


Asunto(s)
Tensión Superficial , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...