Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
bioRxiv ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39131361

RESUMEN

The chronic inflammation present in type 2 diabetes causes many chronic inflammatory comorbidities, including cardiovascular, renal, and neuropathic complications. Type 2 diabetes is also associated with a number of spinal pathologies, including intervertebral disc (IVD) degeneration and chronic neck and back pain. Although confounding factors such as obesity are thought to increase the loads to the musculoskeletal system and subsequent degeneration, studies have shown that even after adjusting age, body mass index, and genetics (e.g. twins), patients with diabetes suffer from disproportionately more IVD degeneration and back pain. Yet the tissue-specific responses of the IVD during diabetes remains relatively unknown. We hypothesize that chronic diabetes fosters a proinflammatory microenvironment within the IVD that accelerates degeneration and increases susceptibility to painful disorders. To test this hypothesis, we evaluated two commonly used mouse models of diabetes - the leptin-receptor deficient mouse (db/db) and the chronic high-fat diet in mice with impaired beta-cell function (STZ-HFD). The db/db is a genetic model that spontaneous develop diabetes through hyperphagia, while the STZ-HFD mouse first exhibits rapid obesity development under HFD and pronounced insulin resistance following streptozotocin administration. Both animal models were allowed to develop sustained diabetes for at least twelve weeks, as defined by elevated hemoglobin A1C, hyperglycemia, and glucose intolerance. Following the twelve-week period, the IVDs were extracted in quantified in several measures including tissue-specific secreted cytokines, viscoelastic mechanical behavior, structural composition, and histopathologic degeneration. Although there were no differences in mechanical function or the overall structure of the IVD, the STZ-HFD IVDs were more degenerated. More notably, the STZ-HFD model shows a significantly higher fold increase for eight cytokines: CXCL2, CCL2, CCL3, CCL4, CCL12 (monocyte/macrophage associated), IL-2, CXCL9 (T-cell associated), and CCL5 (pleiotropic). Correlative network analyses revealed that the expression of cytokines differentially regulated between the db/db and the STZ-HFD models. Moreover, the STZ-HFD contained a fragmented and modular cytokine network, indicating greater complexities in the regulatory network. Taken together, the STZ-HFD model of type 2 diabetes may better recapitulate the complexities of the chronic inflammatory processes in the IVD during diabetes.

2.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39071400

RESUMEN

Inflammatory cytokine production and de novo neurovascularization have been identified in painful, degenerated intervertebral discs (IVDs). However, the temporal trajectories of these key pathoanatomical features, including the cascade of inflammatory chemokines and neo- vessel and neurite infiltration, and their associations with IVD degeneration, remain relatively unknown. Investigating this process in the caudal mouse IVD enables the opportunity to study the tissue-specific response without confounding inflammatory signaling from neighboring structures. Thus this study aims to define the progression of chemokine production and neurovascular invasion during the IVD degeneration initiated by injury in the caudal spine 3-month-old C57BL6/J mice. Forty-nine IVD-secreted chemokines and matrix metalloproteinases (MMPs) was measured using multiplex ELISA, and the intradiscal infiltrating vessels (endomucin) and nerves (protein-gene-product 9.5) was quantified in the tissue volume using immunohistochemistry. Injury provoked the increase secretion of IL6, CCL2, CCL12, CCL17, CCL20, CCL21, CCL22, CXCL2 and MMP2 proteins. The centrality and structure of inflammatory networks in IVDs evolved over the 12 post-injury weeks, highlighting distinct responses between the acute and chronic phases. Neurites propagated rapidly within 2-weeks post-injury and remained relatively constant until 12-weeks. Vascular vessel length was observed to peak at 4-weeks post-injury and it regressed by 12-weeks. These findings identified the temporal flux of inflammatory chemokines and pain-associated pathoanatomy in a model of IVD degeneration using the mouse caudal spine.

3.
J Orthop Res ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678396

RESUMEN

Academic researchers faced a multitude of challenges posed by the COVID-19 pandemic, including widespread shelter-in-place orders, workplace closures, and cessation of in-person meetings and laboratory activities. The extent to which these challenges impacted musculoskeletal researchers, specifically, is unknown. We developed an anonymous web-based survey to determine the pandemic's impact on research productivity and career prospects among musculoskeletal research trainees and faculty. There were 116 musculoskeletal (MSK) researchers with varying demographic backgrounds who completed the survey. Of respondents, 48.3% (n = 56) believed that musculoskeletal funding opportunities decreased because of COVID-19, with faculty members more likely to hold this belief compared to nonfaculty researchers (p = 0.008). Amongst MSK researchers, 88.8% (n = 103) reported research activity was limited by COVID-19, and 92.2% (n = 107) of researchers reported their research was not able to be refocused on COVID-19-related topics, with basic science researchers less likely to be able to refocus their research compared to clinical researchers (p = 0.030). Additionally, 47.4% (n = 55) reported a decrease in manuscript submissions since the onset of the pandemic. Amongst 51 trainee researchers, 62.8% (n = 32) reported a decrease in job satisfaction directly attributable to the COVID-19 pandemic. In summary, study findings indicated that MSK researchers struggled to overcome challenges imposed by the pandemic, reporting declines in funding opportunities, research productivity, and manuscript submission. Trainee researchers experienced significant disruptions to critical research activities and worsening job satisfaction. Our findings motivate future efforts to support trainees in developing their careers and target the recovery of MSK research from the pandemic stall.

4.
Elife ; 122024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598270

RESUMEN

Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156-0.366]) vs non-diabetic subjects 0.352% [0.269-0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46-30.10] vs non-diabetic subjects 76.24 MPa [26.81-132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=-0.7500, p=0.0255; r=-0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young's modulus was negatively correlated with SOST (r=-0.5675, p=0.0011), AXIN2 (r=-0.5523, p=0.0042), and SFRP5 (r=-0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.


Type 2 diabetes is a long-term metabolic disease characterised by chronic high blood sugar levels. This in turn has a negative impact on the health of other tissues and organs, including bones. Type 2 diabetes patients have an increased risk of fracturing bones compared to non-diabetics. This is particularly true for fragility fractures, which are fractures caused by falls from a short height (i.e., standing height or less), often affecting hips or wrists. Usually, a lower bone density is associated with higher risk of fractures. However, patients with type 2 diabetes have increased bone fragility despite normal or higher bone density. One reason for this could be the chronically high levels of blood sugar in type 2 diabetes, which alter the properties of proteins in the body. It has been shown that the excess sugar molecules effectively 'react' with many different proteins, producing harmful compounds in the process, called Advanced Glycation End-products, or AGEs. AGEs are ­ in turn ­thought to affect the structure of collagen proteins, which help hold our tissues together and decrease bone strength. However, the signalling pathways underlying this process are still unclear. To find out more, Leanza et al. studied a signalling molecule, called sclerostin, which inhibits a signalling pathway that regulates bone formation, known as Wnt signaling. The researchers compared bone samples from both diabetic and non-diabetic patients, who had undergone hip replacement surgery. Analyses of the samples, using a technique called real-time-PCR, revealed that gene expression of sclerostin was increased in samples of type 2 diabetes patients, which led to a downregulation of Wnt signaling related genes. Moreover, the downregulation of Wnt genes was correlated with lower bone strength (which was measured by compressing the bone tissue). Further biochemical analysis of the samples revealed that higher sclerostin activity was also associated with higher levels of AGEs. These results provide a clearer understanding of the biological mechanisms behind compromised bone strength in diabetes. In the future, Leanza et al. hope that this knowledge will help us develop treatments to reduce the risk of bone complications for type 2 diabetes patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Femenino , Reacción de Maillard , Vía de Señalización Wnt , Huesos , Investigadores
5.
JBMR Plus ; 8(2): ziad012, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38505533

RESUMEN

The fracture behavior of bone is critically important for evaluating its mechanical competence and ability to resist fractures. Fracture toughness is an intrinsic material property that quantifies a material's ability to withstand crack propagation under controlled conditions. However, properly conducting fracture toughness testing requires the access to calibrated mechanical load frames and the destructive testing of bone samples, and therefore fracture toughness tests are clinically impractical. Impact microindentation mimicks certain aspects of fracture toughness measurements, but its relationship with fracture toughness remains unknown. In this study, we aimed to compare measurements of notched fracture toughness and impact microindentation in fresh and boiled bovine bone. Skeletally mature bovine bone specimens (n = 48) were prepared, and half of them were boiled to denature the organic matrix, while the other half remained preserved in frozen conditions. All samples underwent a notched fracture toughness test to determine their resistance to crack initiation (KIC) and an impact microindentation test using the OsteoProbe to obtain the Bone Material Strength index (BMSi). Boiling the bone samples increased the denatured collagen content, while mineral density and porosity remained unaffected. The boiled bones also showed significant reduction in both KIC (P < .0001) and the average BMSi (P < .0001), leading to impaired resistance of bone to crack propagation. Remarkably, the average BMSi exhibited a high correlation with KIC (r = 0.86; P < .001). A ranked order difference analysis confirmed the excellent agreement between the 2 measures. This study provides the first evidence that impact microindentation could serve as a surrogate measure for bone fracture behavior. The potential of impact microindentation to assess bone fracture resistance with minimal sample disruption could offer valuable insights into bone health without the need for cumbersome testing equipment and sample destruction.

6.
bioRxiv ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38464124

RESUMEN

Inadequate repair of injured intervertebral discs (IVD) leads to degeneration and contributes to low back pain. Infiltrating immune cells into damaged musculoskeletal tissues are critical mediators of repair, yet little is known about their identities, roles, and temporal regulation following IVD injury. By analyzing longitudinal changes in gene expression, tissue morphology, and the dynamics of infiltrating immune cells following injury, we characterize sex-specific differences in immune cell populations and identify the involvement of previously unreported immune cell types, γδ and NKT cells. Cd3+Cd4-Cd8- T cells are the largest infiltrating lymphocyte population with injury, and we identified the presence of γδ T cells in this population in female mice specifically, and NKT cells in males. Injury-mediated IVD degeneration was prevalent in both sexes, but more severe in males. Sex-specific degeneration may be associated with the differential immune response since γδ T cells have potent anti-inflammatory roles and may mediate IVD repair.

7.
JOR Spine ; 6(4): e1282, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38156056

RESUMEN

Background: The ion channel transient receptor potential vanilloid 4 (TRPV4) critically transduces mechanical forces in the IVD, and its inhibition can prevent IVD degeneration due to static overloading. However, it remains unknown whether different modes of loading signals through TRPV4 to regulate the expression of inflammatory cytokines. We hypothesized that TRPV4 signaling is essential during static and dynamic loading to mediate homeostasis and mechanotransduction. Methods: Mouse functional spine units were isolated and either cyclically compressed for 5 days (1 Hz, 1 h, 10% strain) or statically compressed (24 h, 0.2 MPa). Conditioned media were monitored at 6 h, 24 h, 2 days, and 5 days, with and without TRPV4 inhibition. Effects of TRPV4 activation was also evaluated without loading. The media was analyzed for a panel of 44 cytokines using a microbead array and then a correlative network was constructed to explore the regulatory relationships during loading and TRPV4 inhibition. After the loading regimen, the IVDs were evaluated histologically for degeneration. Results: Activation of TRPV4 led to an increase interleukin-6 (IL-6) family of cytokines (IL-6, IL-11, IL-16, and leukemia inhibitory factor [LIF]) and decreased the T-cell (CCL3, CCL4, CCL17, CCL20, CCL22, and CXCL10) and monocyte (CCL2 and CCL12) recruiting chemokines by the IVD. Dynamic and static loading each provoked unique chemokine correlation networks. The inhibition of TRPV4 during dynamic loading dysregulated the relationship between LIF and other cytokines, while the inhibition of TRPV4 during static loading disrupted the connectivity of IL-16 and VEGFA. Conclusions: We demonstrated that TRPV4 critically mediates the cytokine production following dynamic and static loading. The activation of TRPV4 upregulated a diverse set of cytokines that may suppress the chemotaxis of T-cells and monocytes, implicating the role of TRPV4 in maintaining the immune privilege of healthy IVD.

8.
Front Psychol ; 14: 1163244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674743

RESUMEN

Although there is ample literature available on toxicity in games, as there is regarding trolling on social media, there are few to no cross-platform studies on toxicity and trolling. In other words, the extant literature focuses on one platform at a time instead of comparing and contrasting them. The present work aims to rectify this gap by analyzing interviews from a larger study of 22 self-proclaimed victims of in-game trolling to not only determine whether social media or gaming communities are considered more toxic but also to explore how definitions of the word 'trolling' change depending on the platform in question. We found that while definitions of in-game trolling behavior focused on behavioral styles of trolling (e.g., throwing one's avatar into enemy fire to disadvantage one's team, and blocking other players' avatars' movement), social media trolling is defined by more sinister actions such as misinformation spreading and 'canceling' other users. We also found that gaming is perceived as generally more toxic than social media, often due to company policies or lack thereof. Practical and theoretical implications for the study of toxicity in all online communities - gaming or social-media based - are discussed.

9.
bioRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37609257

RESUMEN

The fracture behavior of bone is critically important for assessing its mechanical competence and ability to resist fractures. Fracture toughness, which quantifies a material's resistance to crack propagation under controlled geometry, is regarded as the gold standard for evaluating a material's resistance to fracture. However properly conducting this test requires access to calibrated mechanical load frames the destruction of the bone samples, making it impractical for obtaining clinical measurement of bone fracture. Impact microindentation offers a potential alternative by mimicking certain aspects of fracture toughness measurements, but its relationship with mechanistic fracture toughness remains unknown. In this study, we aimed to compare measurements of notched fracture toughness and impact microindentation in fresh and boiled bovine bone. Skeletally mature bovine bone specimens (n=48) were prepared, and half of them were boiled to denature the organic matrix, while the other half remained preserved in frozen conditions. Notched fracture toughness tests were conducted on all samples to determine Initiation toughness (KIC), and an impact microindentation test using the OsteoProbe was performed to obtain the Bone Material Strength index. Boiling the bone samples resulted increased the denatured collagen without affecting mineral density or porosity. The boiled bones also showed significant reduction in both KIC (p < 0.0001) and the average Bone Material Strength index (p < 0.0001), leading to impaired resistance of bone to crack propagation. Remarkably, the average Bone Material Strength index exhibited a high correlation with KIC (r = 0.86; p < 0.001). The ranked order difference analysis confirmed excellent agreement between the two measures. This study provides the first evidence that impact microindentation could serve as a surrogate measure for bone fracture behavior. The potential of impact microindentation to non-destructively assess bone fracture resistance could offer valuable insights into bone health without the need for elaborate testing equipment and sample destruction.

10.
J Bone Miner Res ; 38(7): 1032-1042, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37191221

RESUMEN

The observed increased risk of fracture after cancer radiation therapy is presumably due to a radiation-induced reduction in whole-bone strength. However, the mechanisms for impaired strength remain unclear, as the increased fracture risk is not fully explained by changes in bone mass. To provide insight, a small animal model was used to determine how much of this whole-bone weakening effect for the spine is attributable to changes in bone mass, structure, and material properties of the bone tissue and their relative effects. Further, because women have a greater risk of fracture after radiation therapy than men, we investigated if sex had a significant influence on bone's response to irradiation. Fractionated in vivo irradiation (10 × 3 Gy) or sham irradiation (0 Gy) was administered daily to the lumbar spine in twenty-seven 17-week-old Sprague-Dawley rats (n = 6-7/sex/group). Twelve weeks after final treatment, animals were euthanized, and lumbar vertebrae (L4 and L5 ) were isolated. Using a combination of biomechanical testing, micro-CT-based finite element analysis, and statistical regression analysis, we separated out the effect of mass, structural, and tissue material changes on vertebral strength. Compared with the sham group (mean ± SD strength = 420 ± 88 N), the mean strength of the irradiated group was lower by 28% (117 N/420 N, p < 0.0001). Overall, the response of treatment did not differ with sex. By combining results from both general linear regression and finite element analyses, we calculated that mean changes in bone mass, structure, and material properties of the bone tissue accounted for 56% (66 N/117 N), 20% (23 N/117 N), and 24% (28 N/117 N), respectively, of the overall change in strength. As such, these results provide insight into why an elevated clinical fracture risk for patients undergoing radiation therapy is not well explained by changes in bone mass alone. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Densidad Ósea , Fracturas Óseas , Ratas , Femenino , Animales , Ratas Sprague-Dawley , Densidad Ósea/fisiología , Huesos , Vértebras Lumbares , Microtomografía por Rayos X
11.
Eur Spine J ; 32(6): 1861-1875, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37014436

RESUMEN

PURPOSE: Bullying, harassment, and discrimination (BHD) are prevalent in academic, scientific, and clinical departments, particularly orthopedic surgery, and can have lasting effects on victims. As it is unclear how BHD affects musculoskeletal (MSK) researchers, the following study assessed BHD in the MSK research community and whether the COVID-19 pandemic, which caused hardships in other industries, had an impact. METHODS: A web-based anonymous survey was developed in English by ORS Spine Section members to assess the impact of COVID-19 on MSK researchers in North America, Europe, and Asia, which included questions to evaluate the personal experience of researchers regarding BHD. RESULTS: 116 MSK researchers completed the survey. Of respondents, 34.5% (n = 40) focused on spine, 30.2% (n = 35) had multiple areas of interest, and 35.3% (n = 41) represented other areas of MSK research. BHD was observed by 26.7% (n = 31) of respondents and personally experienced by 11.2% (n = 13), with mid-career faculty both observing and experiencing the most BHD. Most who experienced BHD (53.8%, n = 7) experienced multiple forms. 32.8% (n = 38) of respondents were not able to speak out about BHD without fear of repercussions, with 13.8% (n = 16) being unsure about this. Of those who observed BHD, 54.8% (n = 17) noted that the COVID-19 pandemic had no impact on their observations. CONCLUSIONS: To our knowledge, this is the first study to address the prevalence and determinants of BHD among MSK researchers. MSK researchers experienced and observed BHD, while many were not comfortable reporting and discussing violations to their institution. The COVID-19 pandemic had mixed-effects on BHD. Awareness and proactive policy changes may be warranted to reduce/eliminate the occurrence of BHD in this community.


Asunto(s)
Acoso Escolar , COVID-19 , Acoso Sexual , Humanos , COVID-19/epidemiología , Pandemias , Encuestas y Cuestionarios
12.
J Orthop Res ; 41(10): 2329-2338, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36324161

RESUMEN

Quantitative magnetic resonance imaging (qMRI) measures have provided insights into the composition, quality, and structure-function of musculoskeletal tissues. Low signal-to-noise ratio has limited application to tendon. Advances in scanning sequences and sample positioning have improved signal from tendon allowing for evaluation of structure and function. The purpose of this study was to elucidate relationships between tendon qMRI metrics (T1, T2, T1ρ and diffusion tensor imaging [DTI] metrics) with tendon tissue mechanics, collagen concentration and organization. Sixteen human Achilles tendon specimens were collected, imaged with qMRI, and subjected to mechanical testing with quantitative polarized light imaging. T2 values were related to tendon mechanics [peak stress (rsp = 0.51, p = 0.044), equilibrium stress (rsp = 0.54, p = 0.033), percent relaxation (rsp = -0.55, p = 0.027), hysteresis (rsp = -0.64, p = 0.007), linear modulus (rsp = 0.67, p = 0.009)]. T1ρ had a statistically significant relationship with percent relaxation (r = 0.50, p = 0.048). Collagen content was significantly related to DTI measures (range of r = 0.56-0.62). T2 values from a single slice of the midportion of human Achilles tendons were strongest predictors of tendon tensile mechanical metrics. DTI diffusivity indices (mean diffusivity, axial diffusivity, radial diffusivity) were strongly correlated with collagen content. These findings build on a growing body of literature supporting the feasibility of qMRI to characterize tendon tissue and noninvasively measure tendon structure and function. Statement of Clinical Significance: Quantitative MRI can be applied to characterize tendon tissue and is a noninvasive measure that relates to tendon composition and mechanical behavior.


Asunto(s)
Tendón Calcáneo , Imagen de Difusión Tensora , Humanos , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética , Tendón Calcáneo/diagnóstico por imagen , Colágeno
13.
FASEB J ; 37(2): e22714, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36583692

RESUMEN

While it is well known that mechanical signals can either promote or disrupt intervertebral disc (IVD) homeostasis, the molecular mechanisms for transducing mechanical stimuli are not fully understood. The transient receptor potential vanilloid 4 (TRPV4) ion channel activated in isolated IVD cells initiates extracellular matrix (ECM) gene expression, while TRPV4 ablation reduces cytokine production in response to circumferential stretching. However, the role of TRPV4 on ECM maintenance during tissue-level mechanical loading remains unknown. Using an organ culture model, we modulated TRPV4 function over both short- (hours) and long-term (days) and evaluated the IVDs' response. Activating TRPV4 with the agonist GSK101 resulted in a Ca2+ flux propagating across the cells within the IVD. Nuclear factor (NF)-κB signaling in the IVD peaked at 6 h following TRPV4 activation that subsequently resulted in higher interleukin (IL)-6 production at 7 days. These cellular responses were concomitant with the accumulation of glycosaminoglycans and increased hydration in the nucleus pulposus that culminated in higher stiffness of the IVD. Sustained compressive loading of the IVD resulted in elevated NF-κB activity, IL-6 and vascular endothelial growth factor A (VEGFA) production, and degenerative changes to the ECM. TRPV4 inhibition using GSK205 during loading mitigated the changes in inflammatory cytokines, protected against IVD degeneration, but could not prevent ECM disorganization due to mechanical damage in the annulus fibrosus. These results indicate TRPV4 plays an important role in both short- and long-term adaptations of the IVD to mechanical loading. The modulation of TRPV4 may be a possible therapeutic for preventing load-induced IVD degeneration.


Asunto(s)
Antineoplásicos , Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Antineoplásicos/metabolismo
14.
Shape Med Imaging (2023) ; 14350: 188-200, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38259262

RESUMEN

Non-specific lower back pain (LBP) is a world-wide public health problem that affects people of all ages. Despite the high prevalence of non-specific LBP and the associated economic burdens, the pathoanatomical mechanisms for the development and course of the condition remain unclear. While intervertebral disc degeneration (IDD) is associated with LBP, there is overlapping occurrence of IDD in symptomatic and asymptomatic individuals, suggesting that degeneration alone cannot identify LBP populations. Previous work has been done trying to relate linear measurements of compression obtained from Magnetic Resonance Imaging (MRI) to pain unsuccessfully. To bridge this gap, we propose to use advanced non-Euclidean statistical shape analysis methods to develop biomarkers that can help identify symptomatic and asymptomatic adults who might be susceptible to standing-induced LBP. We scanned 4 male and 7 female participants who exhibited lower back pain after prolonged standing using an Open Upright MRI. Supine and standing MRIs were obtained for each participant. Patients reported their pain intensity every fifteen minutes within a period of 2 h. Using our proposed geodesic logistic regression, we related the structure of their lower spine to pain and computed a regression model that can delineate lower spine structures using reported pain intensities. These results indicate the feasibility of identifying individuals who may suffer from lower back pain solely based on their spinal anatomy. Our proposed spinal shape analysis methodology have the potential to provide powerful information to the clinicians so they can make better treatment decisions.

15.
Appl Sci (Basel) ; 12(16)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-36451894

RESUMEN

Intervertebral disc (IVD) degeneration is characterized by a loss of cellularity, and changes in cell-mediated activity that drives anatomic changes to IVD structure. In this study, we used single-cell RNA-sequencing analysis of degenerating tissues of the rat IVD following lumbar disc puncture. Two control, uninjured IVDs (L2-3, L3-4) and two degenerated, injured IVDs (L4-5, L5-6) from each animal were examined either at the two- or eight-week post-operative time points. The cells from these IVDs were extracted and transcriptionally profiled at the single-cell resolution. Unsupervised cluster analysis revealed the presence of four known cell types in both non-degenerative and degenerated IVDs based on previously established gene markers: IVD cells, endothelial cells, myeloid cells, and lymphoid cells. As a majority of cells were associated with the IVD cell cluster, sub-clustering was used to further identify the cell populations of the nucleus pulposus, inner and outer annulus fibrosus. The most notable difference between control and degenerated IVDs was the increase of myeloid and lymphoid cells in degenerated samples at two- and eight-weeks post-surgery. Differential gene expression analysis revealed multiple distinct cell types from the myeloid and lymphoid lineages, most notably macrophages and B lymphocytes, and demonstrated a high degree of immune specificity during degeneration. In addition to the heterogenous infiltrating immune cell populations in the degenerating IVD, the increased number of cells in the AF sub-cluster expressing Ngf and Ngfr, encoding for p75NTR, suggest that NGF signaling may be one of the key mediators of the IVD crosstalk between immune and neuronal cell populations. These findings provide the basis for future work to understand the involvement of select subsets of non-resident cells in IVD degeneration.

16.
Sci Rep ; 12(1): 15555, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114343

RESUMEN

A targeted injury to the mouse intervertebral disc (IVD) is often used to recapitulate the degenerative cascade of the human pathology. Since injuries can vary in magnitude and localization, it is critical to examine the effects of different injuries on IVD degeneration. We thus evaluated the degenerative progression resulting from either a partial- or full-width injury to the mouse lumbar IVD using contrast-enhanced micro-computed tomography and histological analyses. A lateral-retroperitoneal surgical approach was used to access the lumbar IVD, and the injuries to the IVD were produced by either incising one side of the annulus fibrosus or puncturing both sides of the annulus fibrosus. Female C57BL/6J mice of 3-4 months age were used in this study. They were divided into three groups to undergo partial-width, full-width, or sham injuries. The L5/6 and L6/S1 lumbar IVDs were surgically exposed, and then the L6/S1 IVDs were injured using either a surgical scalpel (partial-width) or a 33G needle (full-width), with the L5/6 serving as an internal control. These animals recovered and then euthanized at either 2-, 4-, or 8-weeks after surgery for evaluation. The IVDs were assessed for degeneration using contrast-enhanced microCT (CEµCT) and histological analysis. The high-resolution 3D CEµCT evaluation of the IVD confirmed that the respective injuries were localized within one side of the annulus fibrosus or spanned the full width of the IVD. The full-width injury caused significant deteriorations in the nucleus pulposus, annulus fibrous and at the interfaces after 2 weeks, which was sustained through the 8 weeks, while the partial width injury caused localized disruptions that remained limited to the annulus fibrosus. The use of CEµCT revealed distinct IVD degeneration profiles resulting from partial- and full-width injuries. The partial width injury may serve as an alternative model for IVD degeneration resulting from localized annulus fibrosus injuries.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Disco Intervertebral , Animales , Anillo Fibroso/diagnóstico por imagen , Anillo Fibroso/patología , Femenino , Humanos , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/diagnóstico por imagen , Degeneración del Disco Intervertebral/patología , Ratones , Ratones Endogámicos C57BL , Punción Espinal , Microtomografía por Rayos X
17.
JOR Spine ; 5(1): e1191, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35386755

RESUMEN

Introduction: Diabetes has long been implicated as a major risk factor for intervertebral disc (IVD) degeneration, interfering with molecular signaling and matrix biochemistry, which ultimately aggravates the progression of the disease. Glucose content has been previously shown to influence structural and compositional changes in engineered discs in vitro, impeding fiber formation and mechanical stability. Methods: In this study, we investigated the impact of diabetic hyperglycemia on young IVDs by assessing biochemical composition, collagen fiber architecture, and mechanical behavior of discs harvested from 3- to 4-month-old db/db mouse caudal spines. Results: We found that discs taken from diabetic mice with elevated blood glucose levels demonstrated an increase in total glycosaminoglycan and collagen content, but comparable advanced glycation end products (AGE) levels to wild-type discs. Diabetic discs also contained ill-defined boundaries between the nucleus pulposus and annulus fibrosus, with the latter showing a disorganized and unaligned collagen fiber network at this same boundary. Conclusions: These compositional and structural changes had a detrimental effect on function, as the diabetic discs were twice as stiff as their wild-type counterparts and demonstrated a significant resistance to deformation. These results indicate that diabetes may predispose the young disc to DDD later in life by altering patterns of extracellular matrix deposition, fiber formation, and motion segment mechanics independently of AGE accumulation.

18.
JOR Spine ; 5(4): e1235, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36601369

RESUMEN

Intervertebral disc degeneration is a common cause of low back pain, the leading cause of disability worldwide. Appropriate preclinical models for intervertebral disc research are essential to achieving a better understanding of underlying pathophysiology and for the development, evaluation, and translation of more effective treatments. To this end, in vivo animal and ex vivo organ culture models are both widely used by spine researchers; however, the relative strengths and weaknesses of these two approaches are a source of ongoing controversy. In this article, members from the Spine and Preclinical Models Sections of the Orthopedic Research Society, including experts in both basic and translational spine research, present contrasting arguments in support of in vivo animal models versus ex vivo organ culture models for studies of the disc, supported by a comprehensive review of the relevant literature. The objective is to provide a deeper understanding of the respective advantages and limitations of these approaches, and advance the field toward a consensus with respect to appropriate model selection and implementation. We conclude that complementary use of several model types and leveraging the unique advantages of each is likely to result in the highest impact research in most instances.

19.
Sci Rep ; 11(1): 24147, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921194

RESUMEN

Diabetes is associated with impaired tendon homeostasis and subsequent tendon dysfunction, but the mechanisms underlying these associations is unclear. Advanced glycation end-products (AGEs) accumulate with diabetes and have been suggested to alter tendon function. In vivo imaging in humans has suggested collagen disorganization is more frequent in individuals with diabetes, which could also impair tendon mechanical function. The purpose of this study was to examine relationships between tendon tensile mechanics in human Achilles tendon with accumulation of advanced glycation end-products and collagen disorganization. Achilles tendon specimens (n = 16) were collected from individuals undergoing lower extremity amputation or from autopsy. Tendons were tensile tested with simultaneous quantitative polarized light imaging to assess collagen organization, after which AGEs content was assessed using a fluorescence assay. Moderate to strong relationships were observed between measures of collagen organization and tendon tensile mechanics (range of correlation coefficients: 0.570-0.727), whereas no statistically significant relationships were observed between AGEs content and mechanical parameters (range of correlation coefficients: 0.020-0.210). Results suggest that the relationship between AGEs content and tendon tensile mechanics may be masked by multifactorial collagen disorganization at larger length scales (i.e., the fascicle level).


Asunto(s)
Tendón Calcáneo/metabolismo , Colágeno/metabolismo , Diabetes Mellitus/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Estrés Mecánico , Tendón Calcáneo/patología , Tendón Calcáneo/fisiopatología , Diabetes Mellitus/patología , Diabetes Mellitus/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad
20.
JBMR Plus ; 5(11): e10545, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34761148

RESUMEN

Humans are exposed to ionizing radiation via spaceflight or cancer radiotherapy, and exposure from radiotherapy is known to increase risk of skeletal fractures. Although irradiation can reduce trabecular bone mass, alter trabecular microarchitecture, and increase collagen cross-linking, the relative contributions of these effects to any loss of mechanical integrity remain unclear. To provide insight, while addressing both the monotonic strength and cyclic-loading fatigue life, we conducted total-body, acute, gamma-irradiation experiments on skeletally mature (17-week-old) C57BL/6J male mice (n = 84). Mice were administered doses of either 0 Gy (sham), 1 Gy (motivated by cumulative exposures from a Mars mission), or 5 Gy (motivated by clinical therapy regimens) with retrieval of the lumbar vertebrae at either a short-term (11-day) or long-term (12-week) time point after exposure. Micro-computed tomography was used to assess trabecular and cortical quantity and architecture, biochemical composition assays were used to assess collagen quality, and mechanical testing was performed to evaluate vertebral compressive strength and fatigue life. At 11 days post-exposure, 5 Gy irradiation significantly reduced trabecular mass (p < 0.001), altered microarchitecture (eg, connectivity density p < 0.001), and increased collagen cross-links (p < 0.001). Despite these changes, vertebral strength (p = 0.745) and fatigue life (p = 0.332) remained unaltered. At 12 weeks after 5 Gy exposure, the trends in trabecular bone persisted; in addition, regardless of irradiation, cortical thickness (p < 0.01) and fatigue life (p < 0.01) decreased. These results demonstrate that the highly significant effects of 5 Gy total-body irradiation on the trabecular bone morphology and collagen cross-links did not translate into detectable effects on vertebral mechanics. The only mechanical deficits observed were associated with aging. Together, these vertebral results suggest that for spaceflight, irradiation alone will likely not alter failure properties, and for radiotherapy, more investigations that include post-exposure time as a positive control and testing of both failure modalities are needed to determine the cause of increased fracture risk. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...