Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(17): 9082-9096, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38619979

RESUMEN

Great efforts have been devoted to the development of novel and multifunctional wound dressing materials to meet the different needs of wound healing. Herein, we covalently grafted quaternary ammonium groups (QAGs) containing 12-carbon straight-chain alkanes to the dextran polymer skeleton. We then oxidized the resulting product into oxidized quaternized dextran (OQD). The obtained OQD polymer is rich in antibacterial QAGs and aldehyde groups. It can react with glycol chitosan (GC) via the Schiff-base reaction to form a multifunctional GC@OQD hydrogel with good self-healing behavior, hemostasis, injectability, inherent superior antibacterial activity, biocompatibility, and excellent promotion of healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds. The biosafe and nontoxic GC@OQD hydrogel with a three-dimensional porous network structure possesses an excellent swelling rate and water retention capacity. It can be used for hemostasis and treating irregular wounds. The designed GC@OQD hydrogel with inherent antibacterial activity possesses good antibacterial efficacy on both S. aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria), as well as MRSA bacteria, with antibacterial activity greater than 99%. It can be used for the treatment of wounds infected by MRSA and significantly promotes the healing of wounds. Thus, the multifunctional antibacterial GC@OQD hydrogel has the potential to be applied in clinical practice as a wound dressing.


Asunto(s)
Antibacterianos , Quitosano , Escherichia coli , Hidrogeles , Staphylococcus aureus Resistente a Meticilina , Cicatrización de Heridas , Hidrogeles/química , Hidrogeles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Animales , Quitosano/química , Quitosano/farmacología , Dextranos/química , Dextranos/farmacología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Ratones , Polisacáridos/química , Polisacáridos/farmacología
2.
Antioxidants (Basel) ; 6(3)2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28753987

RESUMEN

The hypocholesterolemic protective effect of the dried seed of Astragalus complanatus (ACS) was investigated in rats fed with normal diet, high cholesterol diet (HCD), and HCD plus 70% ethanol extract of ACS (600 mg/kg/day) by oral gavage for four weeks. ACS extract was tested to be rich in antioxidants, which may be contributed to its high content of phenolic compounds. Consumption of ACS remarkably suppressed the elevated total cholesterol (p < 0.01) and LDL-C (p < 0.001) induced by HCD. Chemical constituents of ACS extract were analyzed by ultra-performance liquid chromatography coupled with electrospray ionization orbitrap mass spectrometry and the results showed that the ACS extract mainly consisted of phenolic compounds including flavonoids and flavonoid glycosides. In addition, based on the serum fatty acid profiles, elucidated using gas chromatography-mass spectrometry, free and esterified fatty acids including docosapentaenoic acid, adrenic acid, dihomo-γ-linolenic acid and arachidonic acid were regulated in ACS treatment group. Western blot results further indicated the protein expression of peroxisome proliferator-activated receptor alpha (PPARα) (p < 0.05) in liver was upregulated in ACS treatment group. To conclude, our results clearly demonstrated that ACS provides beneficial effect on lowering HCD associated detrimental change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA