Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Natl Cancer Cent ; 4(2): 97-106, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39282584

RESUMEN

The evolutionary dynamics of cancer, characterized by its profound heterogeneity, demand sophisticated tools for a holistic understanding. This review delves into tumor phylogenetics, an essential approach bridging evolutionary biology with oncology, offering unparalleled insights into cancer's evolutionary trajectory. We provide an overview of the workflow, encompassing study design, data acquisition, and phylogeny reconstruction. Notably, the integration of diverse data sets emerges as a transformative step, enhancing the depth and breadth of evolutionary insights. With this integrated perspective, tumor phylogenetics stands poised to redefine our understanding of cancer evolution and influence therapeutic strategies.

2.
Phytomedicine ; 135: 156061, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39332100

RESUMEN

BACKGROUND: Although colistin is widely recognized as the last line of antibiotics against gram-negative bacteria, the emergence and spread of colistin resistance severely diminish its clinical efficacy and application. An alternative strategy to alleviate this crisis is to identify promising colistin adjuvants with enhanced antibacterial activity. PURPOSE: In this study, the adjuvant effects of paeonol on colistin and the underlying mechanisms were investigated. METHOD: Minimum Inhibitory Concentration (MIC) and checkerboard assays were used to investigate the adjuvant activity and structure-activity relationship of paeonol on the antibacterial effect of colistin in vitro. Time-dependent killing and resistance development assays were used to investigate the bactericidal effects and emergence of colistin resistance. Different fluorescent probes and competitive inhibition tests were used to investigate bacterial membrane functions and potential targets. Skin infection and peritonitis-sepsis models were used to evaluate the combined in vivo effects of colistin and paeonol in vivo. RESULT: Paeonol enhanced the antibacterial effects of colistin against gram-negative bacteria, particularly Klebsiella pneumoniae. Structure-activity relationship analysis showed that the hydroxyl, 4-methoxy and ketone carbonyl side chains of the benzene ring contributed to the adjuvant effect of paeonol. Paeonol enhances the bactericidal effects of colistin and minimizes the emergence of colistin resistance. Notably, mechanistic studies demonstrated that the combination of colistin and paeonol enhances membrane disruption and oxidative damage, possibly via interactions with phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CAL). Importantly, paeonol enhanced the efficacy of colistin in both the skin and peritonitis infection models. CONCLUSION: This is the first report on the adjuvant potential of paeonol in colistin to combat K. pneumoniae by promoting membrane disruption and oxidative damage via targeting membrane phospholipids. Notably, the verified target, PE, provides an additional avenue for screening new colistin adjuvants.The combination therapy of paeonol and colistin is a promising strategy for treating infections caused by gram-negative pathogens to address antibiotic resistance issues.

3.
Cell Rep Med ; 5(8): 101678, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39096912

RESUMEN

Chemotherapy-induced premature ovarian insufficiency (CIPOI) triggers gonadotoxicity in women undergoing cancer treatment, leading to loss of ovarian reserves and subfertility, with no effective therapies available. In our study, fecal microbiota transplantation in a cisplatin-induced POI mouse model reveals that a dysbiotic gut microbiome negatively impacts ovarian health in CIPOI. Multi-omics analyses show a significant decrease in Limosilactobacillus reuteri and its catabolite, ß-resorcylic acid , in the CIPOI group in comparison to healthy controls. Supplementation with L. reuteri or ß-RA mitigates cisplatin-induced hormonal disruptions, morphological damages, and reductions in follicular reserve. Most importantly, ß-RA pre-treatment effectively preserves oocyte function, embryonic development, and fetus health, thereby protecting against chemotherapy-induced subfertility. Our results provide evidence that ß-RA suppresses the nuclear accumulation of sex-determining region Y-box 7, which in turn reduces Bcl-2-associated X activation and inhibits granulosa cell apoptosis. These findings highlight the therapeutic potential of targeting the gut-ovary axis for fertility preservation in CIPOI.


Asunto(s)
Cisplatino , Limosilactobacillus reuteri , Ovario , Insuficiencia Ovárica Primaria , Femenino , Animales , Cisplatino/efectos adversos , Cisplatino/toxicidad , Ratones , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/patología , Ovario/efectos de los fármacos , Ovario/patología , Ovario/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Trasplante de Microbiota Fecal , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Ratones Endogámicos C57BL , Antineoplásicos/toxicidad , Antineoplásicos/efectos adversos , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Modelos Animales de Enfermedad , Infertilidad
4.
Nat Protoc ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019974

RESUMEN

With the advent of multiomics, software capable of multidimensional enrichment analysis has become increasingly crucial for uncovering gene set variations in biological processes and disease pathways. This is essential for elucidating disease mechanisms and identifying potential therapeutic targets. clusterProfiler stands out for its comprehensive utilization of databases and advanced visualization features. Importantly, clusterProfiler supports various biological knowledge, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, through performing over-representation and gene set enrichment analyses. A key feature is that clusterProfiler allows users to choose from various graphical outputs to visualize results, enhancing interpretability. This protocol describes innovative ways in which clusterProfiler has been used for integrating metabolomics and metagenomics analyses, identifying and characterizing transcription factors under stress conditions, and annotating cells in single-cell studies. In all cases, the computational steps can be completed within ~2 min. clusterProfiler is released through the Bioconductor project and can be accessed via https://bioconductor.org/packages/clusterProfiler/ .

6.
Front Immunol ; 15: 1369116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711505

RESUMEN

Objective: Previous research has partially revealed distinct gut microbiota in ankylosing spondylitis (AS). In this study, we performed non-targeted fecal metabolomics in AS in order to discover the microbiome-metabolome interface in AS. Based on prospective cohort studies, we further explored the impact of the tumor necrosis factor inhibitor (TNFi) on the gut microbiota and metabolites in AS. Methods: To further understand the gut microbiota and metabolites in AS, along with the influence of TNFi, we initiated a prospective cohort study. Fecal samples were collected from 29 patients with AS before and after TNFi therapy and 31 healthy controls. Metagenomic and metabolomic experiments were performed on the fecal samples; moreover, validation experiments were conducted based on the association between the microbiota and metabolites. Results: A total of 7,703 species were annotated using the metagenomic sequencing system and by profiling the microbial community taxonomic composition, while 50,046 metabolites were identified using metabolite profiling. Differential microbials and metabolites were discovered between patients with AS and healthy controls. Moreover, TNFi was confirmed to partially restore the gut microbiota and the metabolites. Multi-omics analysis of the microbiota and metabolites was performed to determine the associations between the differential microbes and metabolites, identifying compounds such as oxypurinol and biotin, which were correlated with the inhibition of the pathogenic bacteria Ruminococcus gnavus and the promotion of the probiotic bacteria Bacteroides uniformis. Through experimental studies, the relationship between microbes and metabolites was further confirmed, and the impact of these two types of microbes on the enterocytes and the inflammatory cytokine interleukin-18 (IL-18) was explored. Conclusion: In summary, multi-omics exploration elucidated the impact of TNFi on the gut microbiota and metabolites and proposed a novel therapeutic perspective: supplementation of compounds to inhibit potential pathogenic bacteria and to promote potential probiotics, therefore controlling inflammation in AS.


Asunto(s)
Heces , Microbioma Gastrointestinal , Metaboloma , Probióticos , Espondilitis Anquilosante , Humanos , Espondilitis Anquilosante/microbiología , Espondilitis Anquilosante/metabolismo , Espondilitis Anquilosante/inmunología , Masculino , Femenino , Adulto , Heces/microbiología , Metagenómica/métodos , Persona de Mediana Edad , Estudios Prospectivos , Metabolómica , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral/farmacología
7.
Sci Total Environ ; 927: 172335, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604369

RESUMEN

The neurotoxic methylmercury (MeHg) is a product of inorganic mercury (IHg) after microbial transformation. Yet it remains unclear whether microbial activity or IHg supply dominates Hg methylation in paddies, hotspots of MeHg formation. Here, we quantified the response of MeHg production to changes in microbial activity and Hg supply using 63 paddy soils under the common scenario of straw amendment, a globally prevalent agricultural practice. We demonstrate that the IHg supply is the limiting factor for Hg methylation in paddies. This is because IHg supply is generally low in soils and can largely be facilitated (by 336-747 %) by straw amendment. The generally high activities of sulfate-reducing bacteria (SRB) do not limit Hg methylation, even though SRB have been validated as the predominant microbial Hg methylators in paddies in this study. These findings caution against the mobilization of legacy Hg triggered by human activities and climate change, resulting in increased MeHg production and the subsequent flux of this potent neurotoxin to our dining tables.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes del Suelo , Suelo , Compuestos de Metilmercurio/análisis , Compuestos de Metilmercurio/metabolismo , Mercurio/análisis , Mercurio/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Suelo/química , Agricultura/métodos , Microbiología del Suelo , Monitoreo del Ambiente
8.
Nat Food ; 5(4): 301-311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605129

RESUMEN

Contamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems. We characterized Hg methylating microorganisms from 67 cropland ecosystems across 3,600 latitudinal kilometres. The simulations of a rice-paddy biogeochemical model show that MeHg accumulation in rice is 1.3-1.7-fold more sensitive to changes in the relative abundance of Geobacteraceae compared to Hg input, which is recognized as the primary parameter in controlling MeHg exposure. These findings open up a window to predict MeHg formation and accumulation in human food webs, enabling more efficient mitigation of risks to human health through regulations of key soil microbiomes.


Asunto(s)
Compuestos de Metilmercurio , Oryza , Microbiología del Suelo , Contaminantes del Suelo , Bioacumulación , Compuestos de Metilmercurio/metabolismo , Compuestos de Metilmercurio/análisis , Microbiota/efectos de los fármacos , Oryza/metabolismo , Oryza/química , Oryza/microbiología , Suelo/química , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis
9.
J Genet Genomics ; 51(7): 762-768, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38417547

RESUMEN

The molecular clock model is fundamental for inferring species divergence times from molecular sequences. However, its direct application may introduce significant biases due to sequencing errors, recombination events, and inaccurately labeled sampling times. Improving accuracy necessitates rigorous quality control measures to identify and remove potentially erroneous sequences. Furthermore, while not all branches of a phylogenetic tree may exhibit a clear temporal signal, specific branches may still adhere to the assumptions, with varying evolutionary rates. Supporting a relaxed molecular clock model better aligns with the complexities of evolution. The root-to-tip regression method has been widely used to analyze the temporal signal in phylogenetic studies and can be generalized for detecting other phylogenetic signals. Despite its utility, there remains a lack of corresponding software implementations for broader applications. To address this gap, we present shinyTempSignal, an interactive web application implemented with the shiny framework, available as an R package and publicly accessible at https://github.com/YuLab-SMU/shinyTempSignal. This tool facilitates the analysis of temporal and other phylogenetic signals under both strict and relaxed models. By extending the root-to-tip regression method to diverse signals, shinyTempSignal helps in the detection of evolving features or traits, thereby laying the foundation for deeper insights and subsequent analyses.


Asunto(s)
Filogenia , Programas Informáticos , Evolución Molecular
10.
Virology ; 593: 109999, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38368638

RESUMEN

We report the discovery and characterization of a novel adenovirus, Zoothera dauma adenovirus (ZdAdV), from a wild bird species, Zoothera dauma (Scaly thrush). This new atadenovirus was discovered by metagenomic sequencing without virus cultivation. Analyses of the full genome sequence revealed that this new virus is a distinct member of the genus Atadenovirus and represents a novel species. ZdAdV has a genome of 34,760 bp with 28 predicted genes and 39% GC content. ZdAdV is the first atadenovirus to contain ORF19, a gene previously found only in aviadenoviruses. Phylogenetic analysis of ORF19 suggests that it was acquired by ZdAdV through horizontal gene transfer from an aviadenovirus. By analyzing all orthologous genes of aviadenovirus, mastadenovirus, atadenovirus, and siadenovirus, we also found potential horizontal gene transfer for the E4 gene in Pigeon aviadenovirus B. Our study widens our knowledge concerning the genetic diversity and evolutionary history of atadenoviruses and their potential for cross-species transmission.


Asunto(s)
Infecciones por Adenoviridae , Atadenovirus , Aviadenovirus , Animales , Atadenovirus/genética , Genoma Viral , Filogenia , Transferencia de Gen Horizontal , Adenoviridae/genética , Aviadenovirus/genética , Aves , Infecciones por Adenoviridae/genética
11.
Water Res ; 253: 121332, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377924

RESUMEN

Photodegradation is critical to reduce the potent neurotoxic methylmercury (MeHg) in water and its subsequent accumulation along food chains. However, this process has been largely ignored in rice paddies, which are hotspots of MeHg production and receive about a quarter of the world's developed freshwater resources. Here, we reported that significant MeHg photodegradation, primarily mediated by hydroxyl radicals, occurs in the overlying water during rice growth. By incorporating field-measured light interception into a rice paddy biogeochemistry model, as well as photodegradation rates obtained from 42 paddy soils stretching ∼3500 km across China, we estimated that photodegradation reduced MeHg concentrations in paddy water and rice by 82 % and 11 %, respectively. Without photodegradation, paddy water could be a significant MeHg source for downstream ecosystems, with an annual export of 178 - 856 kg MeHg to downstream waters in China, the largest rice producer. These findings suggest that photodegradation in paddy water is critical for preventing greater quantities of MeHg entering human food webs.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Contaminantes del Suelo , Humanos , Mercurio/análisis , Ecosistema , Agua , Fotólisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Suelo , Oryza/metabolismo
12.
Bull Environ Contam Toxicol ; 112(2): 27, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281165

RESUMEN

There are growing concerns about elevated lead (Pb) levels in lip cosmetics, yet in China, the largest lip cosmetic market, recent Pb contamination in lip cosmetics and associated Pb exposure remain unclear. Here, we measured Pb levels of 29 popular lip cosmetics in China and conducted the bioaccessibility-corrected carcinogenic risk assessments and sensitivity analysis regarding Pb exposure for consumers using Monte Carlo simulation. The Pb concentrations of collected samples ranged from undetectable (< 0.05 µg/kg) to 0.21 mg/kg, all of which were well below the Pb concentration limit set for cosmetics in China (10 mg/kg). The 50th percentile incremental lifetime cancer risk (ILCR) of Pb in Chinese cosmetics (1.20E-07) was below the acceptable level (1E-06), indicating that the application of lip cosmetics and subsequent Pb exposure does not pose carcinogenic risks to consumers in most cases. The results of this study provide new insights into understanding the Pb risk in lip cosmetics.


Asunto(s)
Cosméticos , Metales Pesados , Carcinógenos/toxicidad , Carcinógenos/análisis , Plomo/análisis , Labio/química , Medición de Riesgo/métodos , Cosméticos/análisis , China , Metales Pesados/análisis , Monitoreo del Ambiente
13.
Nat Food ; 5(1): 72-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177223

RESUMEN

Dietary exposure to methylmercury (MeHg) causes irreversible damage to human cognition and is mitigated by photolysis and microbial demethylation of MeHg. Rice (Oryza sativa L.) has been identified as a major dietary source of MeHg. However, it remains unknown what drives the process within plants for MeHg to make its way from soils to rice and the subsequent human dietary exposure to Hg. Here we report a hidden pathway of MeHg demethylation independent of light and microorganisms in rice plants. This natural pathway is driven by reactive oxygen species generated in vivo, rapidly transforming MeHg to inorganic Hg and then eliminating Hg from plants as gaseous Hg°. MeHg concentrations in rice grains would increase by 2.4- to 4.7-fold without this pathway, which equates to intelligence quotient losses of 0.01-0.51 points per newborn in major rice-consuming countries, corresponding to annual economic losses of US$30.7-84.2 billion globally. This discovered pathway effectively removes Hg from human food webs, playing an important role in exposure mitigation and global Hg cycling.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Recién Nacido , Humanos , Mercurio/metabolismo , Oryza/metabolismo , Cadena Alimentaria , Compuestos de Metilmercurio/metabolismo , Desmetilación
14.
Sci Total Environ ; 913: 169705, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38160847

RESUMEN

Selenium (Se) is a crucial antagonistic factor of mercury (Hg) methylation in soil, with the transformation of inorganic Hg (IHg) to inert mercury selenide (HgSe) being the key mechanism. However, little evidence has been provided of the reduced Hg mobility at environmentally relevant doses of Hg and Se, and the potential impacts of Se on the activities of microbial methylators have been largely ignored. This knowledge gap hinders effective mitigation for methylmercury (MeHg) risks, considering that Hg supply and microbial methylators serve as materials and workers for MeHg production in soils. By monitoring the mobility of IHg and microbial activities after Se spike, we reported that 1) active methylation might be the premise of HgSe antagonism, as higher decreases in MeHg net production were found in soils with higher constants of Hg methylation rate; 2) IHg mobility did not significantly change upon Se addition in soils with high DOC concentrations, challenging the long-held view of Hg immobilization by Se; and 3) the activities of iron-reducing bacteria (FeRB), an important group of microbial methylators, might be potentially regulated by Se addition at a dose of 4 mg/kg. These findings provide empirical evidence that IHg mobility may not be the limiting factor under Se amendment and suggest the potential impacts of Se on microbial activities.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Selenio , Contaminantes del Suelo , Humanos , Contaminantes del Suelo/análisis , Mercurio/análisis , Suelo
15.
Front Vet Sci ; 10: 1292401, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076566

RESUMEN

Introduction: The emergence of multidrug-resistant (MDR) strains of Salmonella, which is a genus of important zoonotic pathogens, has aroused great public health concern worldwide. Methods: In this study, 167 strains of Salmonella were isolated from 947 samples from broiler farms, slaughterhouses, and markets in Shandong Province. Antibiotic sensitivity testing was performed, and 70 strains of Salmonella were screened out by whole-genome sequencing (WGS) to evaluate serotypes, antimicrobial resistance genes (ARGs), the prevalence of class 1 integrons, the plasmid carriage rate, and phylogenetic characteristics and for multilocus sequence typing (MLST). Results: The results showed that the 167 isolates showed the highest resistance to ampicillin (AMP, 87.4%), sulfamethoxazole (SF, 87.4%), compound sulfamethoxazole (SXT, 81.4%), nalidixic acid (NAL, 80.2%), and amoxicillin/clavulanic acid (A/C, 77.8%). All the strains were sensitive to meropenem (MEM), and 91.0% of the isolates were MDR strains. We screened a total of 45 ARGs, with the highest detection rate observed for the tetracycline (TET) resistance gene tet (A) (81.4%). A total of 21 types of plasmid replicons were detected in Salmonella, of which IncX1 was the most common (74.3%), and 62.9% of the isolates carried a class 1 integron. In addition, a total of 11 different serotypes were detected, with S. enteritidis as the predominant serovar., followed by S. infantis and S. Newport. Twelve different sequence types (STs) were detected, among which ST11 was the main type. There was a strong correspondence between serotypes and STs. We also found that S. Indiana and S. Kentucky had extremely high rates of resistance to ciprofloxacin (CIP) and third-generation cephalosporins. System-wide genome analysis showed the occurrence of long-distance transmission across fields. Conclusion: In conclusion, the detection of multidrug resistance and isolates carrying multidrug resistance genes is the main problem, and emergency strategies should be implemented to address this issue.

16.
Microorganisms ; 11(12)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138130

RESUMEN

Salmonella enterica subsp. enterica serovar Gallinarum biovar pullorum (Salmonella pullorum) is an avian-specific pathogen that has caused considerable economic losses to the poultry industry. High endemicity, poor implementation of hygiene measures, and lack of effective vaccines hinder the prevention and control of this disease in intensively maintained poultry flocks. In recent years, the incidence of arthritis in chicks caused by Salmonella pullorum infection has increased. In this study, four Salmonella pullorum strains were identified from the livers, spleens, and joint fluids of Qingjiaoma chicken breeders with arthritis clinical signs, and an arthritis model of chicks was successfully established using SP206-2. Whole genome sequencing of the SP206-2 strain showed that the genome was 4,730,579 bp, 52.16% GC content, and contained 5007 genes, including 4729 protein-coding regions. The genomic analysis of four arthritis-causing isolates and three diarrhea-causing isolates showed that the genome of arthritis-causing isolates was subject to nonsynonymous mutations, shift mutations, and gene copy deletions. An SNP phylogenetic tree analysis showed that arthritis-causing isolates are located in a different evolutionary branch from diarrhea-causing isolates. Further differential genes analysis showed that the genome of arthritis-causing isolates had missense mutations in genes related to substance metabolism and substance transport, as a result of adaptive evolution.

17.
Phytomedicine ; 120: 155048, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37651753

RESUMEN

BACKGROUND: Benign prostatic hyperplasia (BPH) is a common disease in older men worldwide. However, there is currently no effective treatment for BPH. Bushen Tongluo Formula (Kidney-supplementing and collaterals-unblocking formula [KCF]) is a traditional Chinese medicine formula commonly used to ameliorate the symptoms of BPH, although the specific molecular mechanisms remain unclear. PURPOSE: We aimed to discover the effects and potential mechanisms of KCF against BPH. METHODS: Sixty male SD rats were randomly assigned to one of six group (n = 10): control, low-dosage KCF, medium-dosage KCF, high-dosage KCF, BPH model, and finasteride. A rat model of BPH was established by surgical castration followed by subcutaneous injection of testosterone propionate (TP) for 4 weeks. After treatment, the prostate index, histopathological staining, serum levels of estradiol (E2) and dihydrotestosterone (DHT), protein/mRNA levels of E-cadherin, TGF-ß1, caspase-3, Ki67, and vimentin, abundances of serum metabolites, and the proliferation, cell cycle, and apoptosis of BPH-1 cells were documented. RESULTS: KCF treatment for 4 weeks reduced the prostate volume and prostate index, alleviated histopathological changes to the prostate of rats with TP-induced BPH, decreased serum levels of E2 and DHT, reduced protein/mRNA levels of TGF-ß1 and vimentin, and increased E-cadherin levels. Moreover, KCF-spiked serum inhibited proliferation of BPH-1 cells, blocked the cell cycle, and promoted apoptosis. KCF was also found to regulate the contents of three metabolites (D-maltose, citric acid, and fumaric acid). CONCLUSION: The present study was the first to report that KCF exhibited therapeutic effects against BPH by regulating energy metabolism and inhibiting epithelial-mesenchymal transition in prostate tissues. Hence, KCF presents a viable treatment option for BPH.


Asunto(s)
Hiperplasia Prostática , Propionato de Testosterona , Humanos , Animales , Ratas , Masculino , Anciano , Ratas Sprague-Dawley , Hiperplasia Prostática/inducido químicamente , Hiperplasia Prostática/tratamiento farmacológico , Factor de Crecimiento Transformador beta1 , Vimentina , Cadherinas
18.
Gut Microbes ; 15(1): 2223349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37306408

RESUMEN

The gut metabolome acts as an intermediary between the gut microbiota and host, and has tremendous diagnostic and therapeutic potential. Several studies have utilized bioinformatic tools to predict metabolites based on the different aspects of the gut microbiome. Although these tools have contributed to a better understanding of the relationship between the gut microbiota and various diseases, most of them have focused on the impact of microbial genes on the metabolites and the relationship between microbial genes. In contrast, relatively little is known regarding the effect of metabolites on the microbial genes or the relationship between these metabolites. In this study, we constructed a computational framework of Microbe-Metabolite INteractions-based metabolic profiles Predictor (MMINP), based on the Two-Way Orthogonal Partial Least Squares (O2-PLS) algorithm to predict the metabolic profiles associated with gut microbiota. We demonstrated the predictive value of MMINP relative to that of similar methods. Additionally, we identified the features that would profoundly impact the prediction performance of data-driven methods (O2-PLS, MMINP, MelonnPan, and ENVIM), including the training sample size, host disease state, and the upstream data processing methods of the different technical platforms. We suggest that when using data-driven methods, similar host disease states and preprocessing methods, and a sufficient number of training samples are necessary to achieve accurate prediction.


MMINP fully considers internal and mutual correlations in metabolites and microbial genes and infers metabolite information through their real joint parts.The feasibility of predicting metabolic profiles using gut microbiome data should be based on the premise of similar host disease states, similar preprocessing methods, and a sufficient number of training samples.Although the accuracy of predicted specific metabolites is affected by multiple factors, the systematic conclusions presented for predicted metabolites at higher levels (e.g., class level) are accurate, allowing metabolite prediction to be applied to the discovery of potential metabolite markers.


Asunto(s)
Microbioma Gastrointestinal , Análisis de los Mínimos Cuadrados , Algoritmos , Biología Computacional , Metaboloma
19.
Front Microbiol ; 14: 1184139, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293219

RESUMEN

Introduction: Using black soldier fly larvae (BSFLs) to treat food waste is one of the most promising environmental protection technologies. Methods: We used high-throughput sequencing to study the effects of different nutritional compositions on the intestinal microbiota and digestive enzymes of BSF. Results: Compared with standard feed (CK), high-protein feed (CAS), high-fat feed (OIL) and high-starch feed (STA) had different effects on the BSF intestinal microbiota. CAS significantly reduced the bacterial and fungal diversity in the BSF intestinal tract. At the genus level, CAS, OIL and STA decreased the Enterococcus abundance compared with CK, CAS increased the Lysinibacillus abundance, and OIL increased the Klebsiella, Acinetobacter and Bacillus abundances. Diutina, Issatchenkia and Candida were the dominant fungal genera in the BSFL gut. The relative abundance of Diutina in the CAS group was the highest, and that of Issatchenkia and Candida in the OIL group increased, while STA decreased the abundance of Diutina and increased that of Issatchenkia. The digestive enzyme activities differed among the four groups. The α-amylase, pepsin and lipase activities in the CK group were the highest, and those in the CAS group were the lowest or the second lowest. Correlation analysis of environmental factors showed a significant correlation between the intestinal microbiota composition and digestive enzyme activity, especially α-amylase activity, which was highly correlated with bacteria and fungi with high relative abundances. Moreover, the mortality rate of the CAS group was the highest, and that of the OIL group was the lowest. Discussion: In summary, different nutritional compositions significantly affected the community structure of bacteria and fungi in the BSFL intestinal tract, affected digestive enzyme activity, and ultimately affected larval mortality. The high oil diet gave the best results in terms of growth, survival and intestinal microbiota diversity, although the digestive enzymes activities were not the highest.

20.
Sci Total Environ ; 885: 163776, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37149159

RESUMEN

Accurately measuring the concentration of methylmercury (MeHg) is a critical part of Hg research. While analytical methods of MeHg have not been validated for paddy soils, which are one of the most important and active sites of MeHg production. Here we compared two methods most widely used to extract MeHg from paddy soils, i.e., CuSO4/KBr/H2SO4-CH2Cl2 (referred to as acid extraction) and KOH-CH3OH (referred to as alkaline extraction). By evaluating the formation of MeHg artifact using Hg isotope amendments and quantifying the extraction efficiency using the standard spike in 14 paddy soils, we propose that alkaline extraction is an optimal choice for paddy soils, with negligible MeHg artifact (accounting for 0.62-8.11 % of the background MeHg) and consistently high extraction efficiency (81.4-114.6 % for alkaline extraction compared with 21.3-70.8 % for acid extraction). Our finding highlights the importance of suitable pretreatment and appropriate quality controls during the measurement of MeHg concentrations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...