Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
mSystems ; : e0083924, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320101

RESUMEN

Lactose intolerance (LI) is a prevalent condition characterized by gastrointestinal symptoms that arise following lactose consumption. Recent evidence suggests that the gut microbiome may influence lactose levels in the gut. However, there is limited understanding regarding the alterations in microbiota and metabolism between individuals with LI and non-LI. This study conducted a paired-sample investigation utilizing data from the American Gut Project (AGP) and performed metagenomic and untargeted metabolomic analyses in a Chinese cohort to explore the interaction between the gut microbiome and serum metabolites. In addition, fecal microbiota transplantation (FMT) experiments were conducted to further examine the impact of the LI-associated gut microbiome on inflammatory outcomes. We identified 14 microbial genera that significantly differed between LI and controls from AGP data. Using a machine learning approach, group separation was predicted based on seven species and nine metabolites in the Chinese cohort. Notably, increased levels of Escherichia coli in the LI group were negatively correlated with several metabolites, including PC (22:6/0:0), indole, and Lyso PC, while reduced levels of Faecalibacterium prausnitzii and Eubacterium rectale were positively correlated with indole and furazolidone. FMT-LI rats displayed visceral hypersensitivity and an altered gut microbiota composition compared to FMT-HC rats. Metagenomic and metabolomic analyses revealed an enrichment of MAPK signaling in LI, which was confirmed by FMT-LI rats showing higher expression of ERK and RAS, along with increased concentrations of proinflammatory cytokines. This study provides valuable insights into the disrupted microbial and metabolic traits associated with LI, emphasizing potential microbiome-based approaches for its prevention and treatment. IMPORTANCE: Lactose intolerance (LI) is a prevalent condition characterized by gastrointestinal symptoms after lactose consumption due to a deficiency of lactase. There is limited understanding regarding the microbiota and metabolic alterations between individuals with LI and non-LI. This study represents the first exploration to investigate metagenomic and metabolomic signatures among subjects with lactose intolerance as far as our knowledge. We identified 14 microbial genera in the Western cohort and 7 microbial species, along with 9 circulating metabolites in the Chinese cohort, which significantly differed in LI patients. Metagenomic and metabolomic analyses revealed an enrichment of MAPK signaling in LI patients. This finding was confirmed by FMT-LI rats, exhibiting increased expression of ERK and RAS, along with higher concentrations of pro-inflammatory cytokines. Our study provides insights into the disrupted functional and metabolic traits of the gut microbiome in LI, highlighting potential microbiome-based approaches for preventing and treating LI.

2.
Bull Entomol Res ; : 1-12, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258308

RESUMEN

Pebrine disease, caused by Nosema bombycis (Nb) infection in silkworms, is a severe and long-standing disease that threatens sericulture. As parasitic pathogens, a complex relationship exists between microsporidia and their hosts at the mitochondrial level. Previous studies have found that the translocator protein (TSPO) is involved in various biological functions, such as membrane potential regulation, mitochondrial autophagy, immune responses, calcium ion channel regulation, and cell apoptosis. In the present study, we found that TSPO expression in silkworms (BmTSPO) was upregulated following Nb infection, leading to an increase in cytoplasmic calcium, adenosine triphosphate, and reactive oxygen species levels. Knockdown and overexpression of BmTSPO resulted in the promotion and inhibition of Nb proliferation, respectively. We also demonstrated that the overexpression of BmTSPO promotes host cell apoptosis and significantly increases the expression of genes involved in the immune deficiency and Janus kinase-signal transducer and the activator of the transcription pathways. These findings suggest that BmTSPO activates the innate immune signalling pathway in silkworms to regulate Nb proliferation. Targeting TSPO represents a promising approach for the development of new treatments for microsporidian infections.

3.
Materials (Basel) ; 17(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39336342

RESUMEN

In response to rising CO2 emissions in the cement industry and the growing demand for durable offshore engineering materials, calcium sulphoaluminate (CSA) cement concrete, known for its lower carbon footprint and enhanced corrosion resistance compared to Ordinary Portland Cement (OPC), is increasingly important. However, the chloride transport behavior of CSA concrete in both laboratory and marine environments remains underexplored and controversial. Accordingly, the chloride ion transport behaviors and mechanisms of CSA concrete in laboratory-accelerated drying-wetting cyclic environments using NaCl solution and seawater, as well as in marine tidal environments, were characterized using the rapid chloride test (RCT), X-ray diffraction (XRD), mercury infiltration porosimetry (MIP), and thermogravimetric analysis (TGA). The results reveal that CSA concrete accumulates more chloride ions in NaCl solution than in seawater, with concentrations 2-3.5 times higher at the same water-cement ratio. Microscopic analysis indicates that calcium and sulfate ions present in seawater facilitate the regeneration of ettringite, thereby increasing the density of the surface pore structure. The hydration and repair mechanisms of CSA concrete under laboratory conditions closely resemble those in marine tidal conditions when exposed to seawater. Additionally, this study found that lower chloride ion concentrations and pH levels inhibit the formation of Friedel's salt. Therefore, laboratory experiments with seawater can effectively simulate CSA concrete's chloride transport properties in marine tidal environments, whereas NaCl solution does not accurately reflect actual marine conditions.

4.
Cell Rep ; 43(8): 114600, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39126653

RESUMEN

Malaria is initiated as Plasmodium sporozoites are injected into the dermis when an infected mosquito probes on a vertebrate host for a blood meal. Factors in the mosquito saliva, such as AgTRIO, can alter the ability of Anopheles gambiae to transmit Plasmodium. We therefore used CRISPR-Cas9-mediated genome editing to generate AgTRIO knockout (KO) A. gambiae and examined the ability of these mosquitoes to probe on a vertebrate host. AgTRIO KO mosquitoes showed a diminished host probing capacity and required repetitive probing to locate a blood resource to complete a blood meal. This increased probing resulted in enhanced Plasmodium transmission to the vertebrate host. Our data demonstrate the importance of the A. gambiae saliva protein AgTRIO in probing and its influence on the ability of mosquitoes to transmit malaria.


Asunto(s)
Anopheles , Animales , Anopheles/parasitología , Anopheles/genética , Malaria/transmisión , Malaria/parasitología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Ratones , Sistemas CRISPR-Cas/genética , Femenino , Mosquitos Vectores/parasitología , Mosquitos Vectores/genética
5.
Zhongguo Fei Ai Za Zhi ; 27(7): 529-534, 2024 Jul 20.
Artículo en Chino | MEDLINE | ID: mdl-39147707

RESUMEN

Lung cancer causes a significant threat to human health. Despite considerable advancements in the treatment technologies in recent years, the five-year survival rate for lung cancer patients remains low. In this context, the discovery of pyroptosis, a unique cell death mechanism, offers a novel perspective for exploring new pathways of lung cancer treatment. Particularly, the role of gasdermin E (GSDME) in the process of pyroptosis reveals its tremendous potential in lung cancer therapy. Recent studies have made considerable progress in understanding the role of GSDME-mediated pyroptosis in lung cancer growth, the lung cancer microenvironment, and the effect of GSDME methylation on lung cancer treatment. This paper summarizes these research advancements and analyzes the potential and possible side effects of GSDME-mediated pyroptosis in lung cancer therapy, aiming to provide a theoretical foundation for developing more effective strategies for lung cancer treatment.
.


Asunto(s)
Neoplasias Pulmonares , Piroptosis , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Animales , Gasderminas
6.
Front Immunol ; 15: 1445838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165355

RESUMEN

Objective: Modified Gegen Qinlian Decoction (MGQD) has been shown to effectively relieve ulcerative colitis (UC) without a known pharmacological mechanism. In this study, the anti-colitis efficaciousness of MGQD and its underlying mechanisms in UC were evaluated. Methods: Mice with colitis were administered MGQD for 7 days. Following the evaluation of clinical symptoms, gut microbiota in the feces of UC mice was examined using 16S rRNA sequencing and bile acids (BAs) were examined using LC/MS. Gut microbiota consumption and fecal microbiota transplantation (FMT) were used to explore the involvement of gut microbiota in the anti-UC action of MGQD. Results: MGQD relieved colitis as shown by weight loss protection, a lower disease activity index (DAI), restoration of intestinal length reduction, and lower histopathologic scores. MGQD also restored crypt stem cell proliferation and function of colonic goblet cells, and promoted MUC2 protein secretion. Interestingly, investigations using gut bacterial depletion and FMT showed that MGQD attenuated colonic damage in a gut-dependent way. The modulation of the gut microbiota by MGQD might be attributed to a decrease in Odoribacter and an increase in norank_f_Muribaculaceae. In addition, MGQD modulated the metabolism of BAs while restoring the structure of the gut microbiota. Conclusion: MGQD significantly alleviated colitis in mice, which may be associated with the modulation of gut microbiota and BA metabolism and restoration of function of goblet cells. However, factors other than the gut microbiota may also be involved in the amelioration of UC by MGQD.


Asunto(s)
Ácidos y Sales Biliares , Colitis Ulcerosa , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Células Caliciformes , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/terapia , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Células Caliciformes/efectos de los fármacos , Células Caliciformes/metabolismo , Ácidos y Sales Biliares/metabolismo , Masculino , Trasplante de Microbiota Fecal , Ratones Endogámicos C57BL , Colon/patología , Colon/metabolismo , Colon/efectos de los fármacos , Colon/microbiología
7.
Mol Cancer ; 23(1): 161, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118167

RESUMEN

This commentary offers a thoughtful discussion of the study by Wei et al. published in the journal on the role of Olfactomedin 4 (OLFM4) in incomplete intestinal metaplasia, a gastric precancerous condition. The original paper introduces OLFM4 as a novel biomarker with potential enhanced diagnostic efficacy compared to established markers. However, several methodological and interpretive considerations are noted. The histopathological findings could be refined by using higher magnification to better elucidate the cellular localization of OLFM4. Including high-resolution images for key stainings would enhance the study's robustness in expression profiling. The statistical approach could be strengthened by employing more rigorous, quantitative methodologies. Additionally, integrating immunofluorescence double-staining may improve the reliability of the results. Discrepancies in immunohistochemical signals across datasets suggest a need for further investigation into tissue section representativeness. Clarifying the term "precancerous lesions of gastric carcinoma cells" to align with widely accepted definitions would enhance clarity. The choice of the GES-1 cell model treated with MNNG could be reconsidered in favor of more established models such as organoids, air-liquid interface models, and gastric cancer-specific cell lines. The in vivo MNNG-alcohol combination model might require additional empirical support, given the limited and conflicting literature on this approach, to ensure an accurate portrayal of IM pathogenesis. The commentary concludes with a call for stringent and standardized methodologies in biomarker research to ensure the clinical applicability and reliability of biomarker studies, particularly in the context of gastric cancer detection and intervention.


Asunto(s)
Biomarcadores de Tumor , Factor Estimulante de Colonias de Granulocitos , Lesiones Precancerosas , Neoplasias Gástricas , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Humanos , Lesiones Precancerosas/diagnóstico , Lesiones Precancerosas/patología , Factor Estimulante de Colonias de Granulocitos/metabolismo
8.
J Ethnopharmacol ; 334: 118527, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38971342

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC), a recurrent inflammatory bowel disease, continues to challenge effective pharmacologic management. Disulfidptosis, a recently identified form of cell death, appears implicated in the progression of various diseases. Scientific studies have demonstrated that Modified Gegen Qinlian decoction (MGQD) alleviates UC symptoms. However, the underlying mechanisms remain inadequately elucidated. AIM OF THE STUDY: This study investigated the role of disulfidptosis in UC and explored the potential of MGQD to ameliorate UC by mediating disulfidptosis. METHODS: Microarray data were utilized to identify disulfidptosis-related genes stably expressed in UC, and integrated genomic analyses were conducted to elucidate the landscape of disulfidptosis in UC. Subsequently, C57BL/6J mice were administered 3% dextran sodium sulfate (DSS) to induce experimental colitis and treated with MGQD. Quantitative real-time polymerase chain reaction and immunohistochemical analysis of colonic tissues from colitis mice were performed to validate the microarray data findings. Finally, molecular docking was employed to explore the binding interactions between MGQD components and disulfidptosis biomarkers. RESULTS: Myosin heavy chain 10 (MYH10) and filamin A (FLNA) were identified as stably expressed in UC, demonstrating high diagnostic value for the disease. Correlation analysis indicated that disulfidptosis-related genes are associated with elevated levels of immune cells in UC. Single gene set enrichment analysis further clarified that these genes might be involved in the pathological processes of UC via immune-related pathways. Subsequent animal experiments revealed that MYH10 and FLNA were significantly upregulated in mice with colitis, a condition reversed by MGQD treatment. Molecular docking results showed that MYH10 and FLNA serve as stable binding targets for the primary components of MGQD. CONCLUSIONS: The study identified a connection between the disulfidptosis-related landscape and immune infiltration in UC, suggesting that MGQD may modulate disulfidptosis by inhibiting MYH10 and FLNA, thereby alleviating UC.


Asunto(s)
Colitis Ulcerosa , Sulfato de Dextran , Medicamentos Herbarios Chinos , Ratones Endogámicos C57BL , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/inmunología , Medicamentos Herbarios Chinos/farmacología , Masculino , Ratones , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Colon/inmunología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo
9.
Adv Healthc Mater ; : e2401619, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011810

RESUMEN

Increased inflammatory responses and oxidative stress at the wound site following skin trauma impair healing. Furthermore, skin scarring places fibroblasts under severe mechanical stress and aggravates pathological fibrosis. A novel liposomal composite hydrogel is engineered for wound microenvironment remodeling, incorporating dual-loaded liposomes into gelatin methacrylate to create a nanocomposite hydrogel. Notably, tetrahydrocurcumin (THC) and hepatocyte growth factor (HGF) are encapsulated in the hydrophobic and hydrophilic layers of liposomes, respectively. The composite hydrogel maintains porous nanoarchitecture, demonstrating sustainable THC and HGF release and enhanced mechanical properties and biocompatibility. This system effectively promotes cell proliferation and angiogenesis and attenuates apoptosis. It decreases the expression of the inflammatory factors by inhibiting the high-mobility group box /receptor for advanced glycation end product/NF-κB (HMGB1/RAGE/NF-κB)pathway and increases macrophage polarization from M1 to M2 in vitro, effectively controlling inflammatory responses. It exhibits remarkable antioxidant properties by scavenging excess reactive oxygen species and free radicals. Most importantly, it effectively prevents scar formation by restraining the transforming growth factor beta (TGF-ß)/Smads pathway that downregulates associated fibrotic factors. It demonstrates strong therapeutic effects against inflammation and fibrosis in a rat skin wound model with biosafety, advancing the development of innovative hydrogel-based therapeutic delivery strategies for clinical scarless wound therapy.

10.
Syst Rev ; 13(1): 183, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014437

RESUMEN

BACKGROUND: Growing numbers of randomized clinical trials-based systematic reviews and meta-analyses (SRs/MAs) have been conducted to examine the effectiveness of acupuncture in treating gastroesophageal reflux disease (GERD). An overview of SRs/MAs will be conducted with the aim of systematically compiling, evaluating, and synthesizing the evidence regarding acupuncture for GERD. METHODS: SRs/MAs of acupuncture on GERD will be searched in eight databases. Two independent reviewers will conduct the literature search, data extraction, and review quality assessment. Utilizing the AMSTAR-2 tool, PRISMA checklists, and GRADE system, respectively, the methodological quality, reporting quality, and evidence quality will be evaluated. In relation to the subject and the overview's objects, the results will be given. This study will aid in identifying gaps between evidence and its clinical application and serve as a roadmap for further high-quality research. DISCUSSION: The results of the overview will aid in closing the gap between clinical evidence and its use in clinical practice. This study will identify significant faults in the use of evidence, point out areas where methodology needs to be improved, and provide guidance for future high-quality research. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022371850. ETHICS AND DISSEMINATION: Ethics approval is not necessary because no personal information about individuals is collected. A peer-reviewed journal or pertinent conferences will publish the results, whichever comes first.


Asunto(s)
Terapia por Acupuntura , Reflujo Gastroesofágico , Revisiones Sistemáticas como Asunto , Humanos , Reflujo Gastroesofágico/terapia , Terapia por Acupuntura/métodos , Reproducibilidad de los Resultados , Proyectos de Investigación , Metaanálisis como Asunto
11.
Artículo en Inglés | MEDLINE | ID: mdl-38910477

RESUMEN

BACKGROUND: To date, disease-modifying antirheumatic drugs (DMARDs) are widely used as the primary first-line treatment option for patients with rheumatoid arthritis (RA), and the curative effect of methotrexate (MTX) and leflunomide (LEF; MTX + LEF) is greater than that of single-agent MTX therapy, but the synergistic mechanism of MTX + LEF is unclear. METHODS: First, we explored the mechanism of action of MTX + LEF in RA through network pharmacology and molecular docking. Venn diagram analysis revealed 97 overlapping gene targets of MTX + LEF-RA and STRING, along with Cytoscape plug-in MOCDE and cytoHubba; and GO enrichment analysis revealed that the functions of 97 synergistic targets were related to 123 molecular functions (MF), 63 cell components (CC), and 1,068 biological processes (BP). The Cytoscape plug-in ClueGO demonstrated that these targets were enriched in KEGG pathways of 52 terms, whereas 9 pivotal genes were mainly involved in the signaling pathways of estrogen, Ras, Rap1, PI3K-Akt, relaxin, TNF, AMPK, FoxO, prolactin, IL-17, and adherens junction. Finally, CETSA and DARTS validated the direct binding of MTX or LEF to the selected target proteins EGFR, PPARG, MMP9, and SRC in RAW264.7 cells. RESULTS: We identified 292 MTX targets and 247 LEF targets from 7 databases. Furthermore, 2,814 potential targets of RA were identified by merging 1,925 targets from 7 databases and 999 differentially expressed genes (DEGs) between normal controls and patients with RA extracted from 5 GEO databases. Nine pivotal genes, ESR1, ALB, CASP3, EGFR, HSP90AA1, SRC, MMP9, PPARG, and IGF1, were identified. Molecular docking verified that both MTX and LEF strongly bind to most of the 9 pivotal proteins except ESR1 and IGF1. CONCLUSION: These results contribute to our understanding of the enhancement mechanism of MTX combined with LEF and provide a targeted basis for the clinical treatment of RA.

12.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1882-1887, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812200

RESUMEN

Chemical constituents from the ethanol extract of Picrorhiza scrophulariiflora were isolated and purified by column chromatography. Their structures were identified by HR-MS, 1D and 2D-NMR, and their cytotoxicity was assessed by CCK-8 assay. Four compounds were isolated and identified as follows: 2ß-D-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosterol-5,25-diene-22-one(1), 2ß-D-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5,24-diene-22-one(2), 25-acetoxy-2ß-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5-ene-22-one(3) and 25-acetoxy-2ß-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5,23-(E)-diene-22-one(4). Compound 1 represents a new cucurbitane glycoside. The half inhibitory concentrations of the 4 compounds exceeded 100 µmol·L~(-1) against four tumor cell lines, indicating no significant cytotoxicity.


Asunto(s)
Glicósidos , Picrorhiza , Glicósidos/química , Glicósidos/aislamiento & purificación , Humanos , Línea Celular Tumoral , Picrorhiza/química , Estructura Molecular , Espectroscopía de Resonancia Magnética , Medicamentos Herbarios Chinos/química , Triterpenos
13.
Front Biosci (Landmark Ed) ; 29(5): 189, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38812317

RESUMEN

BACKGROUND: It has been demonstrated that exosomes derived from HPV-16 E7-over-expressiong non-small cell lung cancer (NSCLC) cells (E7 Exo) trigger increased levels of epidermal growth factor receptor (EGFR) and miR-381-3p. The purpose of this investigation was to examine the role of E7 Exo in NSCLC angiogenesis, and to analyze the contribution of exosomal EGFR and miR-381-3p to it. METHODS: The influence of E7 Exo on the proliferation and migration of human umbilical vein endothelial cells (HUVECs) was assessed using colony formation and transwell migration assays. Experiments on both cells and animal models were conducted to evaluate the angiogenic effect of E7 Exo treatment. The involvement of exosomal EGFR and miR-381-3p in NSCLC angiogenesis was further investigated through suppressing exosome release or EGFR activation, or by over-expressing miR-381-3p. RESULTS: Treatment with E7 Exo increased the proliferation, migration, and tube formation capacities of HUVECs, as well as angiogenesis in animal models. The suppression of exosome release or EGFR activation in NSCLC cells decreased the E7-induced enhancements in HUVEC migration and tube formation, and notably reduced vascular endothelial growth factor A (VEGFA) and Ang-1 levels. HUVECs that combined miR-381-3p mimic transfection and E7 Exo treatment exhibited a more significant tube-forming capacity than E7 Exo-treated HUVECs alone, but were reversed by the miR-381-3p inhibitor. CONCLUSION: The angiogenesis induced by HPV-16 E7 in NSCLC is mediated through exosomal EGFR and miR-381-3p.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , Proliferación Celular , Receptores ErbB , Exosomas , Células Endoteliales de la Vena Umbilical Humana , Neoplasias Pulmonares , MicroARNs , Neovascularización Patológica , Proteínas E7 de Papillomavirus , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Exosomas/metabolismo , Exosomas/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/irrigación sanguínea , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Animales , Línea Celular Tumoral , Ratones , Ratones Desnudos , Papillomavirus Humano 16/genética , Angiogénesis
14.
Microbiol Spectr ; 12(6): e0367123, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38690912

RESUMEN

Lipid droplets (LDs) are dynamic organelles that participate in the regulation of lipid metabolism and cellular homeostasis inside of cells. LD-associated proteins, also known as perilipins (PLINs), are a family of proteins found on the surface of LDs that regulate lipid metabolism, immunity, and other functions. In silkworms, pébrine disease caused by infection by the microsporidian Nosema bombycis (Nb) is a severe threat to the sericultural industry. Although we found that Nb relies on lipids from silkworms to facilitate its proliferation, the relationship between PLINs and Nb proliferation remains unknown. Here, we found Nb infection caused the accumulation of LDs in the fat bodies of silkworm larvae. The characterized perilipin1 gene (plin1) promotes the accumulation of intracellular LDs and is involved in Nb proliferation. plin1 is similar to perilipin1 in humans and is conserved in all insects. The expression of plin1 was mostly enriched in the fat body rather than in other tissues. Knockdown of plin1 enhanced Nb proliferation, whereas overexpression of plin1 inhibited its proliferation. Furthermore, we confirmed that plin1 increased the expression of the Domeless and Hop in the JAK-STAT immune pathway and inhibited Nb proliferation. Taken together, our current findings demonstrate that plin1 inhibits Nb proliferation by promoting the JAK-STAT pathway through increased expression of Domeless and Hop. This study provides new insights into the complicated connections among microsporidia pathogens, LD surface proteins, and insect immunity.IMPORTANCELipid droplets (LDs) are lipid storage sites in cells and are present in almost all animals. Many studies have found that LDs may play a role in host resistance to pathogens and are closely related to innate immunity. The present study found that a surface protein of insect lipid droplets could not only regulate the morphological changes of lipid droplets but also inhibit the proliferation of a microsporidian pathogen Nosema bombycis (Nb) by activating the JAK-STAT signaling pathway. This is the first discovery of the relationship between microsporidian pathogen and insect lipid surface protein perilipin and insect immunity.


Asunto(s)
Bombyx , Proteínas de Insectos , Quinasas Janus , Gotas Lipídicas , Nosema , Perilipina-1 , Transducción de Señal , Bombyx/microbiología , Bombyx/metabolismo , Bombyx/genética , Animales , Nosema/metabolismo , Nosema/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Gotas Lipídicas/metabolismo , Quinasas Janus/metabolismo , Quinasas Janus/genética , Perilipina-1/metabolismo , Perilipina-1/genética , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/genética , Cuerpo Adiposo/metabolismo , Larva/microbiología , Larva/metabolismo , Metabolismo de los Lípidos
15.
J Econ Entomol ; 117(3): 772-781, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38691061

RESUMEN

Microsporidia Nosema bombycis (Nb) is a cellular parasite responsible for pébrine disease in silkworms, significantly impacting the sericulture industry. Long non-coding RNAs (lncRNAs), which are RNA fragments longer than 200 nucleotides, are pivotal in a range of cellular and physiological functions. However, the potential role of silkworm lncRNAs in response to Nb infection remains unknown. This study conducted transcriptome sequencing on both larvae and Nb-infected midguts of silkworms, identifying 1,440 lncRNAs across all examined midgut samples. Within the Nb-infected group, 42 differentially expressed lncRNAs (DElncRNAs) and 305 differentially expressed mRNAs (DEmRNAs) were detected. Functional annotation and pathway analysis showed that these DEmRNAs are mostly involved in metabolism, apoptosis, autophagy, and other key pathways. The co-expression network of DEmRNAs and DElncRNAs illustrates that 1 gene could be regulated by multiple lncRNAs and 1 lncRNA may target multiple genes, indicating that the regulation of lncRNA is intricate and networked. In addition, the DElncRNA-miRNA-mRNA network showed that some DElncRNAs may be involved in the immune response and metabolism through miRNA. Notably, the study observed an increase in lncRNA MSTRG857.1 following Nb infection, which may promote Nb proliferation. These findings offer insights into the complex interplay between insects and microsporidia.


Asunto(s)
Bombyx , Larva , Nosema , ARN Largo no Codificante , Bombyx/genética , Bombyx/microbiología , Animales , ARN Largo no Codificante/genética , Nosema/fisiología , Larva/microbiología , Larva/crecimiento & desarrollo , Larva/genética , Transcriptoma
16.
Microb Pathog ; 191: 106649, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636568

RESUMEN

Bombyx mori nucleopolyhedrovirus (BmNPV) is a very common and infectious virus that affects silkworms and hinders silk production. To investigate the intestinal flora of BmNPV-resistant and BmNPV-sensitive silkworm varieties, 16 S rDNA high-throughput sequencing was performed. The results of the cluster analysis showed that the intestinal flora of the resistant silkworm variety was more abundant than that of the sensitive silkworm variety. This was found even when infection with BmNPV caused a sharp decline in the number of intestinal floral species in both resistant and sensitive silkworm varieties. The abundances of the intestinal flora, including Aureimonas, Ileibacterium, Peptostreptococcus, Pseudomonas, Enterococcus, and Halomonas, in the resistant variety were considerably greater after infection with BmNPV than those in the sensitive variety. After infection with BmNPV, four kinds of important intestinal bacteria, namely, f_Saccharimonadaceae, Peptostreptococcus, Aureirmonas, and f_Rhizobiaceae, were found in the resistant silkworm variety. In the sensitive silkworm variety, only Faecalibaculum was an important intestinal bacterium. The differential or important bacteria mentioned above might be involved in immunoreaction or antiviral activities, especially in the intestines of BmNPV-resistant silkworms. By conducting a functional enrichment analysis, we found that BmNPV infection did not change the abundance of important functional components of the intestinal flora in resistant or sensitive silkworm varieties. However, some functional factors, such as the biosynthesis, transport, and catabolism of secondary metabolites (e.g., terpenoids and polyketides) and lipid transport and metabolism, were more important in the resistant silkworm variety than in the sensitive variety; thus, these factors may increase the resistance of the host to BmNPV. To summarize, we found significant differences in the composition, abundance, and function of the intestinal flora between resistant and sensitive silkworm varieties, especially after infection with BmNPV, which might be closely related to the resistance of resistant silkworm varieties to BmNPV.


Asunto(s)
Bacterias , Bombyx , Microbioma Gastrointestinal , Nucleopoliedrovirus , ARN Ribosómico 16S , Animales , Bombyx/virología , Bombyx/microbiología , Nucleopoliedrovirus/fisiología , Nucleopoliedrovirus/genética , Microbioma Gastrointestinal/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Resistencia a la Enfermedad , ADN Ribosómico/genética , ADN Bacteriano/genética
17.
Bioinform Adv ; 4(1): vbae022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638281

RESUMEN

Motivation: Scientists world-wide are putting together massive efforts to understand how the biodiversity that we see on Earth evolved from single-cell organisms at the origin of life and this diversification process is represented through the Tree of Life. Low sampling rates and high heterogeneity in the rate of evolution across sites and lineages produce a phenomenon denoted "long branch attraction" (LBA) in which long nonsister lineages are estimated to be sisters regardless of their true evolutionary relationship. LBA has been a pervasive problem in phylogenetic inference affecting different types of methodologies from distance-based to likelihood-based. Results: Here, we present a novel neural network model that outperforms standard phylogenetic methods and other neural network implementations under LBA settings. Furthermore, unlike existing neural network models in phylogenetics, our model naturally accounts for the tree isomorphisms via permutation invariant functions which ultimately result in lower memory and allows the seamless extension to larger trees. Availability and implementation: We implement our novel theory on an open-source publicly available GitHub repository: https://github.com/crsl4/nn-phylogenetics.

18.
Chin J Integr Med ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676828

RESUMEN

The progression from gastric mucosal inflammation to cancer signifies a pivotal event in the trajectory of gastric cancer (GC) development. Chinese medicine (CM) exhibits unique advantages and holds significant promise in inhibiting carcinogenesis of the gastric mucosa. This review intricately examines the critical pathological events during the transition from gastric mucosal inflammation-cancer transformation (GMICT), with a particular focus on pathological evolution mechanisms of spasmolytic polypeptide-expressing metaplasia (SPEM). Moreover, it investigates the pioneering applications and advancements of CM in intervening within the medical research domain of precancerous transformations leading to GC. Furthermore, the analysis extends to major shortcomings and challenges confronted by current research in gastric precancerous lesions, and innovative studies related to CM are presented. We offer a highly succinct yet optimistic outlook on future developmental trends. This paper endeavors to foster a profound understanding of forefront dynamics in GMICT research and scientific implications of modernizing CM. It also introduces a novel perspective for establishing a collaborative secondary prevention system for GC that integrates both Western and Chinese medicines.

19.
Phytomedicine ; 127: 155481, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452693

RESUMEN

BACKGROUND: Functional dyspepsia (FD) is a prevalent and challenging gastrointestinal disorder. Conventional medicine often faces limitations in providing effective treatment for FD, thus indicating the need to explore alternative approaches. Traditional Chinese medicine (TCM), which is rooted in ancient Chinese traditions and has evolved over thousands of years, offers a holistic approach to well-being. TCM incorporates herbal remedies, acupuncture, and other therapies while shaping the future of complementary and alternative medicine. PURPOSE: To review the existing literature on the current status and future prospects of using TCM to treat FD. METHODS: We extensively searched the PubMed, Google Scholar, Embase, an China National Knowledge Internet databases from inception to May 31, 2023 to identify relevant literature. We also searched the reference lists of the included articles. RESULTS: Clinical evidence-based research has explored the efficacy of TCM in treating FD. Recent research has illuminated the multifaceted mechanisms through which TCM interventions affect FD. TCM is a promising alternative, as it emphasizes a holistic approach and holds potential advantages in addressing the complex nature of FD. CONCLUSIONS: The integration of TCM and Western medicine offers a comprehensive approach to understanding and managing FD by bridging traditional wisdom with modern scientific understanding. This paper highlights the practical implications of this integration, the challenges to be addressed, and the potential for international collaboration to further elucidate the efficacy of TCM. However, continued research and dialog are needed to advance the modern development of TCM and to improve the quality of life of FD patients.


Asunto(s)
Medicamentos Herbarios Chinos , Dispepsia , Humanos , Medicamentos Herbarios Chinos/uso terapéutico , Dispepsia/tratamiento farmacológico , Medicina Tradicional China , Fitoterapia , Calidad de Vida
20.
Heliyon ; 10(6): e27819, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38496853

RESUMEN

Background: The concept of the gut-liver axis was proposed by Marshall in 1998, and since then, this hypothesis has been gradually accepted by the academic community. Many publications have been published on the gut-liver axis, making it important to assess the scientific implications of these studies and the trends in this field. Methods: Publications were retrieved from the Web of Science Core Collection. Microsoft Excel, CiteSpace, VOSviewer, and Scimago Graphica software were used for bibliometric analysis. Results: A total of 776 publications from the Web of Science core database were included in this study. In the past 25 years, the number of publications on the gut-liver axis has shown an upward trend, particularly in the past 3 years (2020-2022). China had the highest number of publications (267 articles, 34.4%). However, the United States was at the top regarding influence and international cooperation in this field. The University of California San Diego had contributed the most publications. Suk, Ki Tae and Schnabl, Bernd were tied for the first rank in most publications. Thematic hotspots and frontiers were focused on gut microbiota, microbial metabolite, intestinal permeability, bacterial translocation, bile acid, non-alcoholic steatohepatitis, and alcoholic liver disease. Conclusion: Our study is the first bibliometric analysis of literature using visualization software to present the current research status of the gut-liver axis over the past 25 years. The damage and repair of intestinal barrier function, as well as the disruption of gut microbiota and host metabolism, should be a focus of attention. This study can provide a reference for later researchers to understand the global research trends, hotspots, and frontiers in this field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...