Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 169054, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38052386

RESUMEN

N-nitrosodiethylamine (NDEA), which is the most toxic nitrosamine among the 9 detected species, has been widely detected in drinking water. Amines containing diethylamine (DEA) groups in the structure would generate NDEA during the disinfection processes. The aim of this study was to evaluate the feasibility of reducing NDEA formation from a commonly used dithiocarbamate pesticide sodium diethyldithiocarbamate (DEDTC) in subsequent chlorination and chloramination by pre-ozonation. The results demonstrated that NDEA could be generated directly during ozonation, its amounts increased from 0 to 14.34 µg/L with increasing ozone dosages (0-4 mg/L), which was higher than that chlorination (2.68 µg/L) and chloramination (4.91 µg/L) when the initial concentration of DEDTC was 20 µM. Pre-ozonation significantly raised NDEA formation from 2.68 to15.32 µg/L in subsequent chlorination; and that from 4.91 to 9.54 µg/L during subsequent chloramination processes. The addition of •OH scavenger tert-butanol (tBA) increased the production of NDEA from 8.14 to 20.80 µg/L during ozonation, and that from 6.76 to17.98 µg/L in O3/HClO process, 8.74 to 17.33 µg/L in O3/NH2Cl process. Except for NO3- and CO32-, most of the co-existing substances promoted NDEA generation from DEDTC under disinfection conditions. Based on the results of Gaussian theory calculations, GC/MS and UPLC-Q-TOFMS analysis, the influencing mechanisms of pre-ozonation on NDEA generation in the subsequent disinfection process were proposed. In addition, not only acute/chronic toxicity calculation but also luminescent bacteria test was performed to assess the possibility of pre-ozonation on the risk control of DEDTC. The research results fill a gap in the control of NDEA pollution and help to develop a safer ozone oxidation technology.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Halogenación , Dietilnitrosamina , Estudios de Factibilidad , Desinfección/métodos , Ozono/análisis , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis
2.
J Org Chem ; 88(16): 11504-11513, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37549384

RESUMEN

Molecular manipulation of guanidino-containing biomolecules in a cellular environment is fundamental to exploiting protein function and drug release, but currently, there is a lack of suitable methods for reaction screening and monitoring. To exploit the potential of the fluorescent method in this respect, herein, we evaluated a novel array of 7-guanidinyl coumarins by incorporating different substituted guanidino moieties into a coumarin scaffold. These compounds were prepared by guanidinylation reagent S-methylisothiourea or TFA-protected pyrazole-carboxamidine. Examination of their photophysical properties revealed that the fluorescence emission of alkyloxycarbonyl-substituted guanidinyl coumarin was significantly enhanced as compared with the unsubstituted analogue. This dramatic fluorescence difference enabled preliminary exploitation of the Pd-catalyzed release of allyloxycarbonyl (Alloc)-caged guanidinyl coumarin-6 in living cells.


Asunto(s)
Guanidinas , Paladio , Guanidina , Fluorescencia , Cumarinas
4.
Environ Sci Pollut Res Int ; 30(36): 86425-86436, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37405603

RESUMEN

A biological aluminum-based P-inactivation agent (BA-PIA) has been developed and demonstrated to effectively remove nitrogen and phosphorus; however, whether it can control the release of nitrogen and phosphorus in sediment still needs study. This study aimed to examine the effect of BA-PIA on controlling sediment nitrogen and phosphorus release. BA-PIA was prepared by artificial aeration. The use of BA-PIA in controlling nitrogen and phosphorus release was studied using water and sediment from a landscape lake in static simulation experiments. The sediment microbial community was analyzed using high-throughput sequencing. Static simulation showed that the reduction rates of total nitrogen (TN) and total phosphorus (TP) by BA-PIA were 66.8 ± 1.46% and 96.0 ± 0.98%, respectively. In addition, capping of BA-PIA promotes the conversion of easily released nitrogen (free nitrogen) in the sediment to stable nitrogen (acid-hydrolyzable nitrogen). The content of weakly adsorbed phosphorus and iron-adsorbed phosphorus in the sediment was reduced. The relative abundance of nitrifying bacteria, denitrifying bacteria, and microorganisms carrying phosphatase genes (such as Actinobacteria) in the sediment increased by 109.78%. The capping of BA-PIA not only effectively removed the nitrogen and phosphorus in water but greatly reduced the risk of nitrogen and phosphorus release from sediment. BA-PIA was able to make up for the deficiency of the aluminum-based phosphorus-locking agent (Al-PIA) that only removes phosphorus, giving it improved application prospects.


Asunto(s)
Aluminio , Contaminantes Químicos del Agua , Fósforo , Nitrógeno/análisis , Factores Biológicos , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Lagos , Agua
5.
Mol Pharm ; 20(8): 3925-3936, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37505210

RESUMEN

Colorectal cancer (CRC) therapy is a big challenge, and seeking an effective and safe drug is a pressing clinical need. Gambogic acid is a potent antineoplastic agent without the drawback of bone marrow suppression. To improve its druggability (e.g., poor water solubility and tumor delivery), a lactoferrin-modified gambogic acid liposomal delivery system (LF-lipo) was developed to enhance the treatment efficacy of CRC. The LF-lipo can specifically bind LRP-1 expressed on colorectal cancer cells to enhance drug delivery to the tumor cells and yield enhanced therapeutic efficacy. The LF-lipo promoted tumor cell apoptosis and autophagy, reduced reactive oxygen species (ROS) levels in tumor cells, and inhibited angiogenesis; moreover, it could also repolarize tumor-associated macrophages from the M2 to M1 phenotype and induce ICD to activate T cells, exhibiting the capability of remodeling the tumor immune microenvironment. The liposomal formulation yielded an efficient and safe treatment outcome and has potential for clinical translation.


Asunto(s)
Neoplasias Colorrectales , Liposomas , Humanos , Liposomas/uso terapéutico , Lactoferrina , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Microambiente Tumoral
6.
J Nanobiotechnology ; 20(1): 389, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042499

RESUMEN

Dysregulated mucosal immune responses and colonic fibrosis impose two formidable challenges for ulcerative colitis treatment. It indicates that monotherapy could not sufficiently deal with this complicated disease and combination therapy may provide a potential solution. A chitosan-modified poly(lactic-co-glycolic acid) nanoparticle (CS-PLGA NP) system was developed for co-delivering patchouli alcohol and simvastatin to the inflamed colonic epithelium to alleviate the symptoms of ulcerative colitis via remodeling immune microenvironment and anti-fibrosis, a so-called "two-birds-one-stone" nanotherapeutic strategy. The bioadhesive nanomedicine enhanced the intestinal epithelial cell uptake efficiency and improved the drug stability in the gastrointestinal tract. The nanomedicine effectively regulated the Akt/MAPK/NF-κB pathway and reshaped the immune microenvironment through repolarizing M2Φ, promoting regulatory T cells and G-MDSC, suppressing neutrophil and inflammatory monocyte infiltration, as well as inhibiting dendritic cell maturation. Additionally, the nanomedicine alleviated colonic fibrosis. Our work elucidates that the colon-targeted codelivery for combination therapy is promising for ulcerative colitis treatment and to address the unmet medical need.


Asunto(s)
Colitis Ulcerosa , Colitis , Nanopartículas , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Humanos , Nanomedicina
7.
Neurol Res ; 44(2): 113-120, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34396926

RESUMEN

BACKGROUND: Glioma is the most common intrinsic tumor in central nervous system and is characterized by their diffuse infiltration of the brain tissue. Insulin-like Growth Factor Binding Protein-6 (IGFBP6) was associated with the insulin-like growth factor binding and insulin-like growth factor II binding processes in many cancers. Herein, we aimed to investigate the biological functions and clinical features of IGFBP6 in gliomas. METHODS: Totally, we collected 325 RNA sequencing data from CGGA dataset as training cohort, and 969 RNA sequencing data from TCGA dataset as validation cohort. The clinical and molecular characteristics analysis and gene ontology analysis of IGFBP6 were performed. All analyses and graphs were produced based on R language. RESULTS: We found that IGFBP6 expression was significantly upregulated in GBM patients and downregulated in IDH mutant patients. Receiver Operating Characteristic (ROC) analysis revealed that IGFBP6 could be used as a biomarker to predict TCGA mesenchymal subtype. GO analysis revealed that IGFBP6 was correlated with immunological functions and inflammation activities. Meanwhile, higher expression of IGFBP6 suggested significant relationship with worse prognosis in glioma patients. CONCLUSIONS: Our findings improved the understanding of IGFBP6 in glioma, and IGFBP6 might be a potential therapeutic target for glioma patients in future clinical trials.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/diagnóstico , Regulación Neoplásica de la Expresión Génica/genética , Glioma/diagnóstico , Proteína 6 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Neoplasias Encefálicas/genética , Glioma/genética , Humanos , Pronóstico
8.
Acta Pharmacol Sin ; 42(11): 1913-1920, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34561552

RESUMEN

Sepsis is a dysregulated immune response to infection and potentially leads to life-threatening organ dysfunction, which is often seen in serious Covid-19 patients. Disulfiram (DSF), an old drug that has been used to treat alcohol addiction for decades, has recently been identified as a potent inhibitor of the gasdermin D (GSDMD)-induced pore formation that causes pyroptosis and inflammatory cytokine release. Therefore, DSF represents a promising therapeutic for the treatment of inflammatory disorders. Lactoferrin (LF) is a multifunctional glycoprotein with potent antibacterial and anti-inflammatory activities that acts by neutralizing circulating endotoxins and activating cellular responses. In addition, LF has been well exploited as a drug nanocarrier and targeting ligands. In this study, we developed a DSF-LF nanoparticulate system (DSF-LF NP) for combining the immunosuppressive activities of both DSF and LF. DSF-LF NPs could effectively block pyroptosis and inflammatory cytokine release from macrophages. Treatment with DSF-LF NPs showed remarkable therapeutic effects on lipopolysaccharide (LPS)-induced sepsis. In addition, this therapeutic strategy was also applied to treat ulcerative colitis (UC), and substantial treatment efficacy was achieved in a murine colitis model. The underlying mode of action of these DSF-LF-NPs may contribute to efficiently suppressing macrophage-mediated inflammatory responses and ameliorating the complications caused by sepsis and UC. As macrophage pyroptosis plays a pivotal role in inflammation, this safe and effective biomimetic nanomedicine may offer a versatile therapeutic strategy for treating various inflammatory diseases by repurposing DSF.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Colitis Ulcerosa , Disulfiram/farmacocinética , Lactoferrina , Síndrome de Respuesta Inflamatoria Sistémica , Inhibidores del Acetaldehído Deshidrogenasa/farmacología , Animales , Antiinflamatorios/farmacología , Materiales Biomiméticos/farmacología , COVID-19/inmunología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inmunología , Modelos Animales de Enfermedad , Disulfiram/farmacología , Portadores de Fármacos/farmacología , Humanos , Inmunosupresores/farmacología , Lactoferrina/metabolismo , Lactoferrina/farmacología , Lipopolisacáridos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Nanopartículas/uso terapéutico , Piroptosis/efectos de los fármacos , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Resultado del Tratamiento
9.
J Microbiol ; 58(10): 868-877, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32876914

RESUMEN

Stenotrophomonas maltophilia (S. maltophilia) is a common opportunistic pathogen in intensive care units and causes infections most often after surgeries in immune-compromised patients such as those undergoing chemotherapy. Outer membrane protein A (OmpA) is the most abundant of the outer membrane proteins in S. maltophilia. Previous studies on OmpA usually focus on its interaction with the host cells and its role in vaccine development. However, the impact of OmpA on the virulence of S. maltophilia to host cells and the effects on apoptosis remain unclear. In this study, we exposed purified recombinant S. maltophilia OmpA (rOmpA) to HEp-2 cells and investigated the effects of OmpA on epithelial cell apoptosis. Morphologic and flow cytometric analyses revealed that HEp-2 cells stimulated with rOmpA multiple apoptosis features, including nuclear roundness and pyknosis, chromatin aggregation, and phosphatidylserine eversion. We found that rOmpA regulated the protein levels of Bax and Bcl-xL in HEp-2 cells, leading to changes in mitochondria permeability and the release of cytochrome c and apoptosis-inducing factors into the cytoplasm. These subsequently activate the caspase-9/caspase-3 pathway that promote apoptosis. We also observed that rOmpA enhanced the generation of reactive oxygen species and increased intracellular Ca2+ levels in HEp-2 cells. Collectively, our data suggested that rOmpA induced epithelial cells apoptosis via mi-tochondrial pathways.


Asunto(s)
Apoptosis/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Infecciones por Bacterias Gramnegativas/patología , Mitocondrias/metabolismo , Stenotrophomonas maltophilia/patogenicidad , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular , Células Epiteliales/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Especies Reactivas de Oxígeno/metabolismo , Stenotrophomonas maltophilia/metabolismo , Virulencia , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
10.
Am J Transl Res ; 12(4): 1379-1396, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32355549

RESUMEN

Brain tumors include those that originate within the brain (primary tumors) as well as those that arise from other cancers (metastatic tumors). The fragile nature of the brain poses a major challenge to access focal malignancies, which certainly limits both diagnostics and therapeutic approaches. This limitation has been alleviated with the advent of liquid biopsy technologies. Liquid biopsy represents a highly convenient, fast and non-invasive method, which allows multiple sampling and dynamic pathological detection. Biomarkers derived from liquid biopsies can promptly reflect changes on the gene expression profiling of tumors. Biomarkers derived from tumor cells contain abundant genetic information, which may provide a strong basis for the diagnosis and the individualized treatment of brain tumor patients. A series of body fluids can be assessed for liquid biopsy, including peripheral blood, cerebrospinal fluid (CSF), urine or saliva. Interestingly, the sensitivity and specificity of biomarkers from the CSF of patients with brain tumors is typically higher than those detected in the peripheral blood and other sources. Hence, here we describe and properly discuss the clinical roles of distinct classes of CSF biomarkers, isolated from patients with brain tumors, such as circulating tumor DNA (ctDNA), microRNA (miRNA), proteins, and extracellular vesicles (EVs).

11.
Environ Toxicol Pharmacol ; 70: 103192, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31103492

RESUMEN

The stress-induced hormone corticosterone initiates oxidative stress and inflammatory responses, culminating in cell apoptosis and neurological changes. We assessed the effects of d-Limonene on a PC12 cellular model of corticosterone-induced neurotoxicity, and whether these effects involved the AMP-activated protein kinase (AMPKα) pathway. PC12 cells were treated with corticosterone with or without d-limonene for 24 h. Western blots were performed to measure activation of AMPK pathway members [Silent mating type information regulation 2 homolog-1 (SIRT1), AMPKα, and nuclear factor (NFκB)], reactive oxygen species, inflammatory cytokines, and markers of apoptosis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) was used to measure cell death after treatment. d-Limonene reversed the effects of corticosterone on PC12 cells: it decreased the levels of malondialdehyde (MDA) and nitric oxide (NO), activities of NADPH oxidase (p67-phox and p47-phox), expression of pro-inflammatory markers [inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin 6 (IL-6), interleukin 1ß (IL-1ß), and tumor necrosis factor α (TNF-α)], and expression of pro-apoptotic proteins [Bcl2 associated with X protein (Bax) and cleaved caspase-3)]. d-Limonene also increased levels of the antioxidant enzymes superoxide dismutase 1 (SOD1) and heme oxygenase 1 (HO-1) and the anti-apoptotic protein Bcl-2 while decreasing the number of TUNEL-positive cells. d-limonene significantly activated AMPKα and suppressed NF-κB nuclear translocation through up-regulation of SIRT1. Addition of compound C, an AMPK inhibitor, severely weakened these neuroprotective effects of d-limonene. d-Limonene has a neuroprotective effect on corticosterone-induced PC12 cell injury induced by activating the AMPKα signaling pathway, and thereby inhibiting reactive oxygen species and inflammatory factors. These data suggest that d-limonene might protect against neuronal death to improve depressive symptoms.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Corticosterona/toxicidad , Limoneno/farmacología , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/metabolismo , Animales , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Ratas , Transducción de Señal/efectos de los fármacos
12.
PLoS One ; 14(4): e0214596, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30934008

RESUMEN

Stenotrophomonas maltophilia (S. maltophilia), a multi-drug resistant opportunistic pathogen, is associated with nosocomial and community-acquired infections. Preventive and therapeutic strategies for such infections are greatly needed. In this study, sequence alignment analysis revealed that Outer membrane protein A (OmpA) was highly conserved among S. maltophilia strains but shared no significant similarity with human and mouse proteomes. In mice, intranasal immunization with S. maltophilia recombinant OmpA (rOmpA) without additional adjuvant induced sustained mucosal and systemic rOmpA-specific antibody responses. Treatment with rOmpA stimulated significantly higher levels of secretion of IFN-γ, IL-2, and IL-17A (All P<0.05) from the primary splenocytes isolated from rOmpA-immunized mice than from the primary splenocytes isolated from PBS-immunized mice. Furthermore, mice immunized with rOmpA showed significantly reduced bacterial burden in the lung and reduced levels of pro-inflammatory cytokines (TNF-α and IL-6) in bronchoalveolar lavage fluid (BALF) 24 hours after intranasal S. maltophilia infection, indicating that immunization with rOmpA may have protective effects against S. maltophilia challenge in mice. Our findings suggest that intranasal immunization with rOmpA may induce mucosal and systemic immune responses in mice, trigger Th1- and Th17-mediated cellular immune responses, and thus stimulate host immune defense against S. maltophilia infection. These results also demonstrate that intranasal vaccination may offer an alternative approach to current strategies since it induces a mucosal as well as a systemic immune response.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/prevención & control , Stenotrophomonas maltophilia , Adyuvantes Inmunológicos , Administración Intranasal , Animales , Anticuerpos Antibacterianos/inmunología , Formación de Anticuerpos , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Vacunas Bacterianas/administración & dosificación , Líquido del Lavado Bronquioalveolar , Biología Computacional , Femenino , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Análisis de Secuencia de ADN , Bazo/inmunología , Células TH1/citología , Células Th17/citología , Factor de Necrosis Tumoral alfa/metabolismo
13.
BMC Infect Dis ; 18(1): 347, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30053835

RESUMEN

BACKGROUND: Stenotrophomonas maltophilia (S. maltophilia) is an emerging global multiple-drug-resistant organism. It becomes increasingly challenging to treat S. maltophilia infection effectively. Novel therapeutic and preventive approaches targeting S. maltophilia infection are still lacking. This study aims to isolate outer membrane proteins (Omps) from S. maltophilia and use immunoproteomic technology to identify potential vaccine candidates of Omps against S. maltophilia infections. METHODS: Omps from S. maltophilia culture were separated by two-dimensional electrophoresis and identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry and nano liquid chromatography coupled fourier transform ion cyclotron resonance tandem mass spectrometry. Recombinant Omps were prepared and used to immunize mice, and the potency of mouse anti-Omp serum was tested in opsonophagocytic killing assay (OPKA). The effects of immunization with recombinant Omp on blood and tissue bacterial loads in a mouse model of S. maltophilia-induced infection were analyzed. RESULTS: Outer membrane protein A (OmpA) and Smlt4123 were identified by mass spectrometry. Mouse anti-Smlt4123 serum significantly reduced the bacterial counts in healthy individuals' blood in OPKA (P < 0.05) but mouse anti-OmpA serum did not. Enzyme-linked immunosorbent assay revealed that the antibody subtype of mouse anti-Smlt4123 antibody was IgG1. Eight hours after an intraperitoneal challenge with S. maltophilia, the bacterial loads in mouse blood were significantly lower in the mice receiving immunization with recombinant Smlt4123 than in the control mice receiving no immunization (P < 0.05), whereas the bacterial loads in other organs, such as the liver, spleen, lung, and kidney were similar in the two groups. CONCLUSIONS: The results revealed that the immunoproteomic approach was an efficient way to screen the immunogenic protein of Stenotrophomonas maltophilia. Moreover, the recombinant Smlt4123 had potential to protect mice from bacteremia caused by S. maltophilia in the early stages.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Infecciones por Bacterias Gramnegativas , Stenotrophomonas maltophilia , Animales , Anticuerpos Antibacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Vacunas Bacterianas/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/prevención & control , Ratones , Proteínas Recombinantes/inmunología , Stenotrophomonas maltophilia/química , Stenotrophomonas maltophilia/inmunología
14.
Biosens Bioelectron ; 87: 888-893, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27662583

RESUMEN

With development of economy and society, there is an urgent need to develop convenient and sensitive methods for detection of Cu2+ pollution in water. In this article, a simple and sensitive SERS sensor was proposed to quantitative analysis of trace Cu2+ in water. The SERS sensor platform was prepared a common gold nanoparticle (AuNP)-SiO2 sol substrate platform by adsorbing HSA, coupling with the catalytic reaction of Cu2+-ascorbic acid (H2A)-dissolved oxygen, and using label-free Victoria blue B (VBB) as SERS molecular probes. The SERS sensor platform response to the AuNP aggregations by hydroxyl radicals (•OH) oxidizing from the Cu2+ catalytic reaction, which caused the SERS signal enhancement. Therefore, by monitoring the increase of SERS signal, Cu2+ in water can be determined accurately. The results show that the SERS sensor platforms owns a linear response with a range from 0.025 to 25µmol/L Cu2+, and with a detection limit of 0.008µmol/L. In addition, the SERS method demonstrated good specificity for Cu2+, which can determined accurately trace Cu2+ in water samples, and good recovery and accuracy are obtained for the water samples. With its high selectivity and good accuracy, the sensitive SERS quantitative analysis method is expected to be a promising candidate for determining copper ions in environmental monitoring and food safety.


Asunto(s)
Cobre/análisis , Agua Potable/análisis , Oro/química , Nanopartículas del Metal/química , Colorantes de Rosanilina/química , Espectrometría Raman/métodos , Contaminantes Químicos del Agua/análisis , Animales , Ácido Ascórbico/química , Técnicas Biosensibles/métodos , Catálisis , Cationes Bivalentes/análisis , Bovinos , ADN/química , Humanos , Límite de Detección , Nanopartículas del Metal/ultraestructura , Albúmina Sérica/química , Albúmina Sérica Bovina/química , Dióxido de Silicio/química
15.
Biomed Res Int ; 2015: 580240, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25654114

RESUMEN

An S. maltophilia strain named WJ66 was isolated from a patient; WJ66 showed resistance to more antibiotics than the other S. maltophilia strains. This bacteraemia is resistant to sulphonamides, or fluoroquinolones, while the representative strain of S. maltophilia, K279a, is sensitive to both. To explore drug resistance determinants of this strain, the draft genome sequence of WJ66 was determined and compared to other S. maltophilia sequences. Genome sequencing and genome-wide evolutionary analysis revealed that WJ66 was highly homologous with the strain K279a, but strain WJ66 contained additional antibiotic resistance genes. Further analysis confirmed that strain WJ66 contained an amino acid substitution (Q83L) in fluoroquinolone target GyrA and carried a class 1 integron, with an aadA2 gene in the resistance gene cassette. Homology analysis from the pathogen-host interaction database showed that strain WJ66 lacks raxST and raxA, which is consistent with K279a. Comparative genomic analyses revealed that subtle nucleotide differences contribute to various significant phenotypes in close genetic relationship strains.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Stenotrophomonas maltophilia/genética , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , China , Bases de Datos Genéticas , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Genes Bacterianos , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Integrones/genética , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Stenotrophomonas maltophilia/efectos de los fármacos
16.
Toxicol Ind Health ; 29(8): 722-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22491725

RESUMEN

Paraquat (PQ) is a potent toxicant for humans, and poisoning with PQ is associated with high mortality. Patients with severe PQ-induced poisoning may die of multiple organ failure involving the circulatory and respiratory systems. Death resulting from epilepsy-like convulsions, which are infrequently noted reported with PQ poisoning, is observed clinically with this condition. This study presents the clinical data of five patients with severe PQ-induced poisoning who died of epilepsy-like convulsions, and related publications were reviewed in order to investigate the pathogenesis, clinical manifestations, and prognosis of these convulsions. Our results may help prevent this event and improve the success of treatment.


Asunto(s)
Barrera Hematoencefálica , Paraquat/envenenamiento , Convulsiones/patología , Adulto , Resultado Fatal , Femenino , Humanos , Paraquat/farmacocinética , Convulsiones/inducido químicamente , Tomógrafos Computarizados por Rayos X , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...