Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Pept Lett ; 23(5): 442-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27001406

RESUMEN

The AP2/ERF play a key role in multiple stress responses in plants. we here report a novel salt stress-related gene, LcAP2/ERF107 that encodes an AP2/ERF protein in Lotus corniculatus cultivar Leo. LcAP2/ERF107 was classified into the soloist subfamiliy based on phylogenetic relationship. The transcription of LcAP2/ERF107 were strongly induced by salt and other phytohormones (ABA, ACC, MeJA). A subcellular localization experiment indicated that LcAP2/ERF107 is a nuclear protein that activates transcription. LcAP2/ERF107 overexpression in Arabidopsis resulted in pleiotropic phenotypes, including higher seed germination rate and transgenic plants with enhanced tolerance to salt stress. Further, under salt tolerance the transgenic lines elevated the relative moisture content; however, the relative electrolyte leakage was lower than in control plants. The expression levels of indicative genes RD22, RD29A, LEA4-5, P5CS1 and P5CS2 were found to be increased in the transgenic plants compared with the WT plants. These results indicated that LcAP2/ERF107 play an important role in the responses of plant to salt stress.


Asunto(s)
Lotus/genética , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Factores de Transcripción/genética , Clonación Molecular , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Lotus/fisiología , Proteínas de Plantas/análisis , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Semillas/química , Semillas/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/química , Factores de Transcripción/metabolismo
2.
Protein Pept Lett ; 23(5): 495-502, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26972972

RESUMEN

Alfalfa is excellent perennial legume forage for its extensive ecological adaptability, high nutrition value, palatability and biological nitrogen fixation. It plays a very important role in the agriculture, animal husbandry and ecological construction. It is cultivated in all continents. With the development of modern plant breeding and genetic engineering techniques, a large amount of work has been carried out on alfalfa. Here we summarize the recent research advances in genetic engineering of alfalfa breeding, including transformation, quality improvement, stress resistance and as a bioreactor. The review article can enables us to understand the research method, direction and achievements of genetic engineering technology of Alfalfa.


Asunto(s)
Adaptación Fisiológica/genética , Genes de Plantas/genética , Ingeniería Genética/métodos , Medicago sativa/genética , Plantas Modificadas Genéticamente/genética , Reactores Biológicos , Medicago sativa/metabolismo , Plantas Modificadas Genéticamente/metabolismo
3.
Protein Pept Lett ; 23(5): 468-77, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26972974

RESUMEN

Tartary buckwheat is an ancient annual dicotyledonous herb, which is widely distributed around the world, specifically in the high altitude area of southwestern China and in the hill region of Himalayan. The plantlet regeneration of tartary buckwheat via somatic embryogenesis or multiple shoot induction was investigated in two different tartary buckwheats, Yuanzi and Xichang. The regeneration ability of Yuanzi was better than Xichang tartary buckwheat, and the hypocotyls were better than cotyledons as tartary buckwheat plantlet regeneration explants via somatic embryogenesis. The most suitable medium for callus induction was Murashige and Skoog basal medium added 2 mg/L 2, 4- dichlorophenoxyacetic acid and 1 mg/L Kinetin, which could reach up to 98.96% callus induction percentage. The plantlet regeneration percentage from callus of tartary buckwheat could reach up to 55.77%, which induced on 2.0 mg/L Benzyladenine and 1.0 mg/L KT in MS basal medium. In addition, maximum of multiple shoot induction percentage was 69.05%, which was observed in case of Yuanzi tartary buckwheat in MS basal medium with added 3.0 mg/L 6-BA and 1.0 mg/L Thidiazuron. Roots induction of regenerated plants were achieved on 1/2 MS basal medium with added 1mg/L Indole-3-Butytric acid, which has 75% survival after transferred regenerated plants to soil under field conditions.


Asunto(s)
Fagopyrum/fisiología , Brotes de la Planta/fisiología , Regeneración/fisiología , Semillas/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos/métodos , Fagopyrum/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/efectos de los fármacos , Regeneración/efectos de los fármacos , Semillas/efectos de los fármacos
4.
Funct Integr Genomics ; 14(3): 453-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24777608

RESUMEN

Lotus corniculatus is used in agriculture as a main forage plant. Members of the Apetala2/ethylene response factor (AP2/ERF) family play important roles in regulating gene expression in response to many forms of stress, including drought and salt. Here, starting from database of the L. corniculatus var. japonicus genome, we identified 127 AP2/ERF genes by insilico cloning method. The phylogeny, gene structures, and putative conserved motifs in L. corniculatus var. japonicus ERF proteins were analyzed. Based on the number of AP2/ERF domains and the function of the genes, 127 AP2/ERF genes from L. corniculatus var. japonicus were classified into five subfamilies named the AP2, dehydration-responsive element binding factor (DREB), ERF, RAV, and a soloist. Outside the AP2/ERF domain, many L. corniculatus var. japonicus-specific conserved motifs were detected. Expression profile analysis of AP2/ERF genes by quantitative real-time PCR revealed that 19 LcERF genes, including LcERF054 (KJ004728), were significantly induced by salt stress. The results showed that the LcERF054 gene encodes a nuclear transcription activator. Overexpression of LcERF054 in Arabidopsis enhanced the tolerances to salt stress, showed higher germination ratio of seeds, and had elevated levels of relative moisture contents, soluble sugars, proline, and lower levels of malondialdehyde under stress conditions compared to wild-type plants. The expression of hyperosmotic salinity response genes COR15A, LEA4-5, P5CS1, and RD29A was found to be elevated in the LcERF054-overexpressing Arabidopsis plants compared to wild type. These results revealed that the LcERF genes play important roles in L. corniculatus cv Leo under salt stress and that LcERFs are attractive engineering targets in applied efforts to improve abiotic stress tolerances in L. corniculatus cv Leo or other crops.


Asunto(s)
Lotus/genética , Proteínas Nucleares/genética , Proteínas de Plantas/genética , Proteínas Represoras/genética , Tolerancia a la Sal/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Secuencia Conservada , Evolución Molecular , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudio de Asociación del Genoma Completo , Lotus/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Cloruro de Sodio/metabolismo , Activación Transcripcional
5.
DNA Res ; 20(5): 437-48, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23690543

RESUMEN

MYB proteins constitute one of the largest transcription factor families in plants. Recent evidence revealed that MYB-related genes play crucial roles in plants. However, compared with the R2R3-MYB type, little is known about the complex evolutionary history of MYB-related proteins in plants. Here, we present a genome-wide analysis of MYB-related proteins from 16 species of flowering plants, moss, Selaginella, and algae. We identified many MYB-related proteins in angiosperms, but few in algae. Phylogenetic analysis classified MYB-related proteins into five distinct subgroups, a result supported by highly conserved intron patterns, consensus motifs, and protein domain architecture. Phylogenetic and functional analyses revealed that the Circadian Clock Associated 1-like/R-R and Telomeric DNA-binding protein-like subgroups are >1 billion yrs old, whereas the I-box-binding factor-like and CAPRICE-like subgroups appear to be newly derived in angiosperms. We further demonstrated that the MYB-like domain has evolved under strong purifying selection, indicating the conservation of MYB-related proteins. Expression analysis revealed that the MYB-related gene family has a wide expression profile in maize and soybean development and plays important roles in development and stress responses. We hypothesize that MYB-related proteins initially diversified through three major expansions and domain shuffling, but remained relatively conserved throughout the subsequent plant evolution.


Asunto(s)
Evolución Molecular , Genoma de Planta , Proteínas Oncogénicas v-myb/genética , Plantas/genética , Exones , Regulación del Desarrollo de la Expresión Génica , Intrones , Filogenia
6.
Funct Integr Genomics ; 13(2): 229-39, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23455933

RESUMEN

Nicotianamine (NA) is an important divalent metal chelator and the main precursor of phytosiderophores. NA is synthesized from S-adenosylmethionine in a process catalyzed by nicotianamine synthase (NAS). In this study, a set of structural and phylogenetic analyses have been applied to identify the maize NAS genes based on the maize genome sequence release. Ten maize NAS genes have been mapped; seven of them have not been reported to date. Phylogenetic analysis and expression pattern from microarray data led to their classification into two different orthologous groups. C-terminal fusion of ZmNAS3 with GFP was found in the cytoplasm of Arabidopsis leaf protoplast. Expression analysis by reverse transcription polymerase chain reaction revealed ZmNAS genes are responsive to heavy metal ions (Ni, Fe, Cu, Mn, Zn, and Cd), and all 10 ZmNAS genes were only observed in the root tissue except of ZmNAS6. The promoter of ZmNAS genes was analyzed for the presence of different cis-element response to all kinds of phytohormones and environment stresses. We found that the ZmNAS gene expression of maize seedlings was regulated by jasmonic acid, abscisic acid, and salicylic acid. Microarray data demonstrated that the ZmNAS genes show differential, organ-specific expression patterns in the maize developmental steps. The integrated comparative analysis can improve our current view of ZmNAS genes and facilitate the functional characterization of individual members.


Asunto(s)
Transferasas Alquil y Aril/genética , Genes de Plantas/genética , Metales Pesados/toxicidad , Familia de Multigenes , Reguladores del Crecimiento de las Plantas/farmacología , Zea mays/enzimología , Zea mays/genética , Biocatálisis/efectos de los fármacos , Citoplasma/efectos de los fármacos , Citoplasma/enzimología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Moleculares , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Filogenia , Regiones Promotoras Genéticas/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Homología Estructural de Proteína , Zea mays/efectos de los fármacos
7.
Funct Integr Genomics ; 13(2): 241-51, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23474989

RESUMEN

Plant annexins are Ca(2+)- and phospholipid-binding proteins forming an evolutionary conserved multi-gene family. They are implicated in the regulation of plant growth, development, and stress responses. With the availability of the maize genome sequence information, we identified 12 members of the maize annexin genes. Analysis of protein sequence and gene structure of maize annexins led to their classification into five different orthologous groups. Expression analysis by RT-PCR revealed that these genes are responsive to heavy metals (Ni, Zn, and Cd). The maize annexin genes were also found to be regulated by Ustilago maydis and jasmonic acid. Additionally, the promoter of the maize annexin gene was analyzed for the presence of different stress-responsive cis-elements, such as ABRE, W-box, GCC-box, and G-box. RT-PCR and microarray data show that all 12 maize annexin genes present differential, organ-specific expression patterns in the maize developmental steps. These results indicate that maize annexin genes may play important roles in the adaptation of plants to various environmental stresses.


Asunto(s)
Anexinas/genética , Ciclopentanos/farmacología , Metales Pesados/toxicidad , Oxilipinas/farmacología , Zea mays/efectos de los fármacos , Zea mays/genética , Secuencia de Aminoácidos , Anexinas/química , Anexinas/metabolismo , Secuencia de Bases , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Datos de Secuencia Molecular , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Zea mays/crecimiento & desarrollo
8.
Funct Integr Genomics ; 12(4): 683-91, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22983498

RESUMEN

Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement.


Asunto(s)
Aldehído Deshidrogenasa/genética , Familia de Multigenes , Zea mays/genética , Aldehído Deshidrogenasa/química , Bases de Datos de Ácidos Nucleicos , Regulación de la Expresión Génica de las Plantas , Filogenia , Estructura Terciaria de Proteína , ARN Mensajero/biosíntesis , Análisis de Secuencia de ADN , Estrés Fisiológico , Zea mays/enzimología
9.
Glycobiology ; 22(12): 1775-85, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22879458

RESUMEN

The raffinose family oligosaccharides (RFOs), such as raffinose and stachyose, are synthesized by a set of distinct galactosyltransferases, which sequentially add galactose units to sucrose. The accumulation of RFOs in plant cells are closely associated with the responses to environmental factors, such as cold, heat and drought stresses. Systematic analysis of genes involved in the raffinose metabolism has not been reported to date. Searching the recently available working draft of the maize genome, six kinds of enzyme genes were speculated, which should encode all the enzymes involved in the raffinose metabolism in maize. Expression patterns of some related putative genes were analyzed. The conserved domains and phylogenetic relationships among the deduced maize proteins and their homologs isolated from other plant species were revealed. It was discovered that some of the key enzymes, such as galactinol synthase (ZmGolS5, ZmGolS45 and ZmGolS37), raffinose synthase (ZmRS1, ZmRS2, ZmRS3 and ZmRS10), stachyose synthase (ZmRS8) and ß-fructofuranosidase, are encoded by multiple gene members with different expression patterns. These results reveal the complexity of the raffinose metabolism and the existence of metabolic channels for diverse RFOs in maize and provide useful information for improving maize stress tolerance through genetic engineering.


Asunto(s)
Galactosiltransferasas/genética , Genoma de Planta , Rafinosa/biosíntesis , Zea mays/enzimología , Disacáridos/metabolismo , Galactosiltransferasas/química , Galactosiltransferasas/metabolismo , Filogenia , Estructura Terciaria de Proteína , Rafinosa/metabolismo , Transcripción Genética , Zea mays/genética , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo
10.
Gene ; 506(1): 10-7, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-22771912

RESUMEN

A novel DREB (dehydration-responsive element binding) gene, designated PeDREB2a, was isolated from the desert-grown tree, Populus euphratica Oliv. PeDREB2a is classified into the A-5 group of DREB subfamily based on multiple sequence alignment and phylogenetic characterization. Using semi-quantitative RT-PCR, we found that the PeDREB2a was greatly induced by drought, NaCl, low temperature, 1-naphthaleneacetic acid (NAA), 6-benzyl aminopurine (6-BA) and gibberellic acid (GA3) treatments in P. euphratica seedling. Yeast transactivity assay demonstrated that PeDREB2a gene encodes a transcription activator. Overexpression of PeDREB2a under the stress-inducible rd29A promotor in transgenic Arabidopsis and Lotus corniculatus forage plants resulted in enhanced tolerance to salt and drought stresses. The PeDREB2a overexpressing Arabidopsis lines showed higher root length and plant height and had elevated levels of soluble sugars and lower levels of malondialdehyde under stress conditions compared to control plants. The results revealed that PeDREB2a play an essential role as a DREB transcription factor in regulation of stress-responsive signaling in P. euphratica.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Lotus/genética , Lotus/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Populus/genética , Populus/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Secuencia de Bases , ADN de Plantas/genética , Sequías , Genes de Plantas , Malondialdehído/metabolismo , Filogenia , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología , Transducción de Señal , Estrés Fisiológico , Regulación hacia Arriba
11.
BMC Plant Biol ; 12: 106, 2012 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-22776508

RESUMEN

BACKGROUND: The MYB superfamily constitutes one of the most abundant groups of transcription factors described in plants. Nevertheless, their functions appear to be highly diverse and remain rather unclear. To date, no genome-wide characterization of this gene family has been conducted in a legume species. Here we report the first genome-wide analysis of the whole MYB superfamily in a legume species, soybean (Glycine max), including the gene structures, phylogeny, chromosome locations, conserved motifs, and expression patterns, as well as a comparative genomic analysis with Arabidopsis. RESULTS: A total of 244 R2R3-MYB genes were identified and further classified into 48 subfamilies based on a phylogenetic comparative analysis with their putative orthologs, showed both gene loss and duplication events. The phylogenetic analysis showed that most characterized MYB genes with similar functions are clustered in the same subfamily, together with the identification of orthologs by synteny analysis, functional conservation among subgroups of MYB genes was strongly indicated. The phylogenetic relationships of each subgroup of MYB genes were well supported by the highly conserved intron/exon structures and motifs outside the MYB domain. Synonymous nucleotide substitution (dN/dS) analysis showed that the soybean MYB DNA-binding domain is under strong negative selection. The chromosome distribution pattern strongly indicated that genome-wide segmental and tandem duplication contribute to the expansion of soybean MYB genes. In addition, we found that ~ 4% of soybean R2R3-MYB genes had undergone alternative splicing events, producing a variety of transcripts from a single gene, which illustrated the extremely high complexity of transcriptome regulation. Comparative expression profile analysis of R2R3-MYB genes in soybean and Arabidopsis revealed that MYB genes play conserved and various roles in plants, which is indicative of a divergence in function. CONCLUSIONS: In this study we identified the largest MYB gene family in plants known to date. Our findings indicate that members of this large gene family may be involved in different plant biological processes, some of which may be potentially involved in legume-specific nodulation. Our comparative genomics analysis provides a solid foundation for future functional dissection of this family gene.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genes de Plantas , Glycine max/genética , Familia de Multigenes , Factores de Transcripción/genética , Empalme Alternativo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromosomas de las Plantas/genética , Secuencia Conservada , Exones , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Intrones , Datos de Secuencia Molecular , Filogenia , Selección Genética , Glycine max/metabolismo , Factores de Transcripción/metabolismo
12.
PLoS One ; 7(6): e37463, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719841

RESUMEN

MYB proteins comprise a large family of plant transcription factors, members of which perform a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, we performed a comprehensive computational analysis, to yield a complete overview of the R2R3-MYB gene family in maize, including the phylogeny, expression patterns, and also its structural and functional characteristics. The MYB gene structure in maize and Arabidopsis were highly conserved, indicating that they were originally compact in size. Subgroup-specific conserved motifs outside the MYB domain may reflect functional conservation. The genome distribution strongly supports the hypothesis that segmental and tandem duplication contribute to the expansion of maize MYB genes. We also performed an updated and comprehensive classification of the R2R3-MYB gene families in maize and other plant species. The result revealed that the functions were conserved between maize MYB genes and their putative orthologs, demonstrating the origin and evolutionary diversification of plant MYB genes. Species-specific groups/subgroups may evolve or be lost during evolution, resulting in functional divergence. Expression profile study indicated that maize R2R3-MYB genes exhibit a variety of expression patterns, suggesting diverse functions. Furthermore, computational prediction potential targets of maize microRNAs (miRNAs) revealed that miR159, miR319, and miR160 may be implicated in regulating maize R2R3-MYB genes, suggesting roles of these miRNAs in post-transcriptional regulation and transcription networks. Our comparative analysis of R2R3-MYB genes in maize confirm and extend the sequence and functional characteristics of this gene family, and will facilitate future functional analysis of the MYB gene family in maize.


Asunto(s)
Genes de Plantas , Genes myb , Familia de Multigenes , Factores de Transcripción/genética , Zea mays/genética , Secuencia de Aminoácidos , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido
13.
Appl Biochem Biotechnol ; 166(7): 1674-84, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22328251

RESUMEN

Catharanthus roseus (L.) G. Don is a plant species known for its production of a variety of terpenoid indole alkaloids, many of which have pharmacological activities. Catharanthine can be chemically coupled to the abundant leaf alkaloid vindoline to form the valuable anticancer drug vinblastine. To study and extract catharanthine and other metabolites from C. roseus, a technique was developed for producing hairy root cultures. In this study, the Agrobacterium rhizogenes A4 was induced in the hairy roots from leaf explants, and the concentration of antibiotics (100 mg/L kanamycin) was elucidated for selection after transformation. The polymerase chain reaction amplification of rol genes results revealed that transgenic hairy roots contained rol genes from the root induced (Ri)-plasmid. Catharanthine from C. roseus hairy roots was separated and analyzed using high-performance liquid chromatography. Over-expression of CrOrca3 (octadecanoid-responsive Catharanthus AP2/ERF domain), and cytohistochemical staining methods were used to validate transgenic hairy roots from C. roseus. Hairy root culture of C. roseus is a valuable approach for future efforts in the metabolic engineering of terpenoid indole alkaloids in plants.


Asunto(s)
Proteínas Bacterianas/genética , Catharanthus/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Factores de Transcripción/genética , Alcaloides de la Vinca/biosíntesis , Agrobacterium/genética , Antineoplásicos/metabolismo , Catharanthus/metabolismo , Catharanthus/microbiología , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica de las Plantas , Ingeniería Metabólica , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Plásmidos , Técnicas de Cultivo de Tejidos , Factores de Transcripción/metabolismo , Transformación Genética
14.
Appl Microbiol Biotechnol ; 91(4): 1095-105, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21590290

RESUMEN

Catharanthus roseus (L.) G. Don is a plant species known for its production of a variety of terpenoid indole alkaloids, many of which have pharmacological activities. Production of catharanthine in cell cultures or in hairy roots established by transformation with Agrobacterium rhizogenes is of interest because catharanthine can be chemically coupled to the abundant leaf alkaloid vindoline to form the valuable anticancer drug vinblastine. Here, we observed a high amount of catharanthine in hairy roots of C. roseus, established by infecting leaf explants with the A. rhizogenes >agropine-type A4 strain carrying plasmid pRi. T-DNA transfer from plasmid pRi into hairy roots was confirmed by PCR for the essential T-DNA genes rolA and rolB and the agropine synthesis gene ags. The results suggest that integration of T-DNA into the plant DNA plays a positive role on the catharanthine pathway in C. roseus hairy roots. Furthermore, co-transformation with the soybean transcription factor GmMYBZ2 indicated that GmMYBZ2 reduces the catharanthine production by alteration of expression of a number of genes linked to the pathway. Transcription levels of the zinc-finger transcription factor 1 gene ZCT1 were high, and the transcription levels of the anthranilate synthase gene ASα, the strictosidine synthase gene STR, and the key transcription factor gene octadecanoid-responsive Catharanthus APETALA2/ethylene response factor were low. In addition, GmMYBZ2 had a negative effect on the gene expression levels of A-type cyclin CYSA and B-type cyclin CYSB, which was correlated with a reduced growth rate of the hairy roots.


Asunto(s)
Catharanthus/metabolismo , Regulación de la Expresión Génica , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Alcaloides de la Vinca/metabolismo , Catharanthus/genética , ADN Bacteriano , Vectores Genéticos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plásmidos , Rhizobium/genética , Glycine max/genética , Factores de Transcripción/genética , Transformación Genética
15.
Appl Microbiol Biotechnol ; 90(4): 1229-39, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21468707

RESUMEN

In the past three decades, hairy roots research for the production of valuable biological active substances has received a lot of attention. The addition of knowledge to enhance the yields of desired substances and the development of novel tools for biomass engineering offer new possibilities for large-scale cultivation of the plant hairy root. Hairy roots can also produce recombinant proteins through the transfer of Agrobacterium T-DNA into the plant genome, and thereby hold immense potential for the pharmaceutical industry. This review highlights some of the significant progress made in the past few years and outlines future prospects for exploiting the potential utility of hairy root cultures as "chemical factories" for producing bioactive substances.


Asunto(s)
Factores Biológicos/metabolismo , Ingeniería Genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores Biológicos/genética , Células Cultivadas , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Appl Microbiol Biotechnol ; 88(3): 737-50, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20714717

RESUMEN

Jasmonates and nitric oxide (NO) play important roles in the regulation of the signaling network leading to the biosynthesis of plant secondary metabolites. In this work, we explore the effect of constitutive overexpression of CrORCA3 (octadecanoid-responsive Catharanthus AP2/ERF domain), methyl jasmonate (MeJA), and sodium nitroprusside (SNP) on the differentiated tissue of Catharanthus roseus hairy roots. The changes in catharanthine concentration and in the levels of mRNA transcripts of pathway genes and regulators were tracked for 192 h. ORCA3 overexpression led to a slight decrease of the accumulation of catharanthine, while MeJA treatment caused a large increase in the levels of transcripts of pathway genes and the catharanthine concentration. SNP treatment alone or SNP in combination with MeJA treatment caused a dramatic decrease of the cathanranthine concentration, while at the same time the levels of transcripts of zinc finger-binding proteins genes (ZCTs) increased. The latter treatment also caused a decrease of the levels of transcripts of type-I protein prenyltransferase gene (PGGT-I). This response of transcriptional repressors and pathway genes may explain the antagonistic effects of NO and MeJA on catharanthine biosynthesis in C. roseus hairy roots.


Asunto(s)
Acetatos/metabolismo , Catharanthus/metabolismo , Ciclopentanos/metabolismo , Óxido Nítrico/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Alcaloides de la Vinca/metabolismo , Vías Biosintéticas , Catharanthus/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Reguladores , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Técnicas de Cultivo de Tejidos , Factores de Transcripción/genética
17.
Yi Chuan ; 31(6): 645-53, 2009 Jun.
Artículo en Chino | MEDLINE | ID: mdl-19586866

RESUMEN

MYB transcription factor is one of the largest families in plants, which plays an important role in regulating plant development and physiological metabolism. In this study, the expression and function of the new MYB transcription factor gene GmMYBJ6 (GenBank No. DQ902863), isolated from soybean (Glycine max L.), were characterized. The expression pattern of GmMYBJ6 in different organs was examined using Northern blotting analysis. The expression of GmMYBJ6 was detected only in the leaves. The transcriptional activation ability of GmMYBJ6 protein was confirmed by the yeast assay system and the activity of beta-galactosidase was 28.48 U/mL. The green fluorescent protein expression vector p163-GFP-GmMYBJ6 was constructed and transformed into the epidermal cells of onion via particle bombardmental method. The results of instantaneous expression showed that GmMYBJ6 proteins were localized in cell nucleus. Semi-quantitative RT-PCR analysis indicated that GmMYBJ6 improved the expression of certain flavonoid biosynthetic genes, such as PAL (Phenylalanine ammonia lyase), C4H (cinnamate-4-hydroxylase), 4CL (4-coumaroyl-CoA ligase), CHS (Chalcone synthase), CHI (Chalcone isomerase), F3H (Flavanone 3-hydroxylase), and FLS (Flavonol synthase), resulting an increase of the total flavonoid levels in positive tobacco transformants. Additionally, the increasing expression of GmMYBJ6 in soybean cultivar Zhongdou 27, induced by UV-B radiation, drought, and high-salt treatment, indicated that GmMYBJ6 was associated with response to abiotic stresses.


Asunto(s)
Aciltransferasas/metabolismo , Flavonoides/biosíntesis , Regulación de la Expresión Génica de las Plantas , Glycine max/metabolismo , Oxigenasas de Función Mixta/metabolismo , Fenilanina Amoníaco-Liasa , Factores de Transcripción/metabolismo , Acilcoenzima A/metabolismo , Flavonoides/genética , Expresión Génica , Liasas Intramoleculares/metabolismo , Oxidorreductasas/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/metabolismo , Glycine max/enzimología , Glycine max/genética , Factores de Transcripción/genética , beta-Galactosidasa/metabolismo
18.
Biotechnol Appl Biochem ; 52(Pt 4): 313-23, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19281450

RESUMEN

The Madagascar periwinkle [Catharanthus roseus (L.) G. Don] is a plant species known for its production of TIAs (terpenoid indole alkaloids), many of which are pharmaceutically important. Ajmalicine and serpentine are prescribed for the treatment of hypertension, whereas the bisindoles vinblastine, vincristine and 3',4'-anhydrovinblastine are used for their antineoplastic activity in the treatment of many cancers. However, TIAs are produced in small yields in C. roseus, which make them expensive. Cell and metabolic engineering has focused on increasing flux through the TIA pathway by various means, including optimization of medium composition, elicitation, construction of noval culture systems and introduction of genes encoding specific metabolic enzymes into the C. roseus genome. The present review will attempt to present the state-of-the-art of research in this area and provide an update on the cell and metabolic engineering of TIAs in C. roseus. We hope that this will contribute to a better understanding of the ways in which TIA production can be achieved in different C. roseus culture systems.


Asunto(s)
Catharanthus/fisiología , Mejoramiento Genético/métodos , Extractos Vegetales/genética , Extractos Vegetales/metabolismo , Ingeniería de Proteínas/métodos , Alcaloides de Triptamina Secologanina/metabolismo , Células Cultivadas , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales/fisiología
19.
Biochemistry (Mosc) ; 74(1): 1-11, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19232042

RESUMEN

MYB genes are widely distributed in higher plants and comprise one of the largest transcription factors, which are characterized by the presence of a highly conserved MYB domain at their N-termini. Over recent decades, biochemical and molecular characterizations of MYB have been extensively studied and reported to be involved in many physiological and biochemical processes. This review describes current knowledge of their structure characteristic, classification, multi-functionality, mechanism of combinational control, evolution, and function redundancy. It shows that the MYB transcription factors play a key role in plant development, such as secondary metabolism, hormone signal transduction, disease resistance, cell shape, organ development, etc. Furthermore, the expression of some members of the MYB family shows tissue-specificity.


Asunto(s)
Proteínas de Plantas/metabolismo , Plantas/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Flavonoides/biosíntesis , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Morfogénesis , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Plantas/metabolismo , Proteínas Proto-Oncogénicas c-myb/química , Proteínas Proto-Oncogénicas c-myb/clasificación , Estrés Fisiológico
20.
Yi Chuan ; 30(10): 1265-71, 2008 Oct.
Artículo en Chino | MEDLINE | ID: mdl-18930885

RESUMEN

Transcriptional regulation of defense gene expression is a crucial part of plant defense responses in plant defense environment stresses. As one of the largest plant transcription factor families, MYB (v-myb avian myeloblastosis viral on-cogene homolog) transcription factors play an important role in plant stress tolerance. In this paper, we review the structural features, functional characterization and molecular mechanism of MYB transcription factor family, and discuss the regula-tory roles of transcription factors in plant defense responses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Datos de Secuencia Molecular , Plantas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...