Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vox Sang ; 119(1): 74-78, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37937512

RESUMEN

BACKGROUND AND OBJECTIVES: The presence of blood subtypes may lead to difficulties in blood group identification; however, third-generation sequencing (TGS) can help in accurately identifying difficult blood groups, and study the serological characteristics and molecular mechanism of Ael subtypes. MATERIALS AND METHODS: ABO blood group was identified by the standard serological technique, weak blood group antigen was identified by adsorption-elution experiments, ABH substance in the saliva was determined and glycosyltransferase activity of A and B was detected. The ABO gene full-length sequence and promoter region were amplified by specific primers using single-molecule real-time sequencing, with the amplified products being sequenced directly and analysed in real time. RESULTS: The patient was serologically identified as Ael subtype, and TGS analysis revealed new intron mutations in Ael patients (c.467C>T; c.29-10T>A). CONCLUSION: The discovery of the new allele and the identification of ABO subtypes can be combined with serological characterization and molecular biological methods.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Humanos , Alelos , Fenotipo , Mutación , Sistema del Grupo Sanguíneo ABO/genética , Genotipo
2.
PLoS One ; 17(12): e0278503, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36459525

RESUMEN

P-nitrophenol (PNP) is a carcinogenic, teratogenic, and mutagenic compound that can cause serious harm to the environment. A strain of Pseudomonas putida DLL-E4, can efficiently degrade PNP in a complex process that is influenced by many factors. Previous studies showed that the expression level of pnpA, a key gene involved in PNP degradation, was upregulated significantly and the degradation of PNP was obviously accelerated in the presence of glucose. In addition, the expression of crc, crcY, and crcZ, key genes involved in catabolite repression, was downregulated, upregulated, and upregulated, respectively. To investigate the effect of the carbon catabolite repression (CCR) system on PNP degradation, the crc, crcY, and crcZ genes were successfully knocked out by conjugation experiments. Our results showed that the knockout of crc accelerated PNP degradation but slowed down the cell growth. However, the knockout of crcY or crcZ alone accelerated PNP degradation when PNP as the sole carbon source, but that knockout slowed down PNP degradation when glucose was added. The results indicate that the CCR system is involved in the regulation of PNP degradation, and further work is required to determine the details of the specific regulatory mechanism.


Asunto(s)
Represión Catabólica , Traumatismos Craneocerebrales , Pseudomonas putida , Humanos , Represión Catabólica/genética , Pseudomonas putida/genética , Técnicas de Inactivación de Genes , Glucosa
3.
Adv Mater ; 34(40): e2204185, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35975467

RESUMEN

Wireless miniature soft actuators are promising for various potential high-impact applications in medical, robotic grippers, and artificial muscles. However, these miniature soft actuators are currently constrained by a small output force and low work capacity. To address such challenges, a miniature magnetic phase-change soft composite actuator is reported. This soft actuator exhibits an expanding deformation and enables up to a 70 N output force and 175.2 J g-1 work capacity under remote magnetic radio frequency heating, which are 106 -107 times that of traditional magnetic soft actuators. To demonstrate its capabilities, a wireless soft robotic device is first designed that can withstand 0.24 m s-1 fluid flows in an artery phantom. By integrating it with a thermally-responsive shape-memory polymer and bistable metamaterial sleeve, a wireless reversible bistable stent is designed toward future potential angioplasty applications. Moreover, it can additionally locomote inside and jump out of granular media. At last, the phase-change actuator can realize programmable bending deformations when a specifically designed magnetization profile is encoded, enhancing its shape-programming capability. Such a miniature soft actuator provides an approach to enhance the mechanical output and versatility of magnetic soft robots and devices, extending their medical and other potential applications.


Asunto(s)
Robótica , Materiales Inteligentes , Fenómenos Magnéticos , Fenómenos Mecánicos , Músculos
4.
Sci Adv ; 8(10): eabm5616, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35275717

RESUMEN

Wireless small-scale soft-bodied devices are capable of precise operation inside confined internal spaces, enabling various minimally invasive medical applications. However, such potential is constrained by the small output force and low work capacity of the current miniature soft actuators. To address this challenge, we report a small-scale soft actuator that harnesses the synergetic interactions between the coiled artificial muscle and radio frequency-magnetic heating. This wirelessly controlled actuator exhibits a large output force (~3.1 N) and high work capacity (3.5 J/g). Combining this actuator with different mechanical designs, its tensile and torsional behaviors can be engineered into different functional devices, such as a suture device, a pair of scissors, a driller, and a clamper. In addition, by assuming a spatially varying magnetization profile, a multilinked coiled muscle can have both magnetic field-induced bending and high contractile force. Such an approach could be used in various future untethered miniature medical devices.

5.
Adv Mater ; 34(19): e2110384, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35172026

RESUMEN

Snap-through bistability is often observed in nature (e.g., fast snapping to closure of Venus flytrap) and the life (e.g., bottle caps and hair clippers). Recently, harnessing bistability and multistability in different structures and soft materials has attracted growing interest for high-performance soft actuators and soft robots. They have demonstrated broad and unique applications in high-speed locomotion on land and under water, adaptive sensing and fast grasping, shape reconfiguration, electronics-free controls with a single input, and logic computation. Here, an overview of integrating bistable and multistable structures with soft actuating materials for diverse soft actuators and soft/flexible robots is given. The mechanics-guided structural design principles for five categories of basic bistable elements from 1D to 3D (i.e., constrained beams, curved plates, dome shells, compliant mechanisms of linkages with flexible hinges and deformable origami, and balloon structures) are first presented, alongside brief discussions of typical soft actuating materials (i.e., fluidic elastomers and stimuli-responsive materials such as electro-, photo-, thermo-, magnetic-, and hydro-responsive polymers). Following that, integrating these soft materials with each category of bistable elements for soft bistable and multistable actuators and their diverse robotic applications are discussed. To conclude, perspectives on the challenges and opportunities in this emerging field are considered.

6.
Sci Adv ; 6(19): eaaz6912, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32494714

RESUMEN

Soft machines typically exhibit slow locomotion speed and low manipulation strength because of intrinsic limitations of soft materials. Here, we present a generic design principle that harnesses mechanical instability for a variety of spine-inspired fast and strong soft machines. Unlike most current soft robots that are designed as inherently and unimodally stable, our design leverages tunable snap-through bistability to fully explore the ability of soft robots to rapidly store and release energy within tens of milliseconds. We demonstrate this generic design principle with three high-performance soft machines: High-speed cheetah-like galloping crawlers with locomotion speeds of 2.68 body length/s, high-speed underwater swimmers (0.78 body length/s), and tunable low-to-high-force soft grippers with over 1 to 103 stiffness modulation (maximum load capacity is 11.4 kg). Our study establishes a new generic design paradigm of next-generation high-performance soft robots that are applicable for multifunctionality, different actuation methods, and materials at multiscales.

7.
Proc Natl Acad Sci U S A ; 116(52): 26407-26413, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31843912

RESUMEN

Kirigami (cutting and/or folding) offers a promising strategy to reconfigure metamaterials. Conventionally, kirigami metamaterials are often composed of passive cut unit cells to be reconfigured under mechanical forces. The constituent stimuli-responsive materials in active kirigami metamaterials instead will enable potential mechanical properties and functionality, arising from the active control of cut unit cells. However, the planar features of hinges in conventional kirigami structures significantly constrain the degrees of freedom (DOFs) in both deformation and actuation of the cut units. To release both constraints, here, we demonstrate a universal design of implementing folds to reconstruct sole-cuts-based metamaterials. We show that the supplemented folds not only enrich the structural reconfiguration beyond sole cuts but also enable more DOFs in actuating the kirigami metasheets into 3 dimensions (3D) in response to environmental temperature. Utilizing the multi-DOF in deformation of unit cells, we demonstrate that planar metasheets with the same cut design can self-fold into programmable 3D kirigami metastructures with distinct mechanical properties. Last, we demonstrate potential applications of programmable kirigami machines and easy-turning soft robots.

8.
Science ; 365(6449): 125-126, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31296758
9.
Soft Robot ; 5(5): 592-600, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29957129

RESUMEN

Climbing soft robots are of tremendous interest in both science and engineering due to their potential applications in intelligent surveillance, inspection, maintenance, and detection under environments away from the ground. The challenge lies in the design of a fast, robust, switchable adhesion actuator to easily attach and detach the vertical surfaces. Here, we propose a new design of pneumatic-actuated bioinspired soft adhesion actuator working both on ground and under water. It is composed of extremely soft bilayer structures with an embedded spiral pneumatic channel resting on top of a base layer with a cavity. Rather than the traditional way of directly pumping air out of the cavity for suction in hard polymer-based adhesion actuator, we inflate air into the top spiral channel to deform into a stable 3D dome shape for achieving negative pressure in the cavity. The characterization of the maximum shear adhesion force of the proposed soft adhesion actuator shows strong and rapid reversible adhesion on multiple types of smooth and semi-smooth surfaces. Based on the switchable adhesion actuator, we design and fabricate a novel load-carrying amphibious climbing soft robot (ACSR) by combining with a soft bending actuator. We demonstrate that it can operate on a wide range of foreign horizontal and vertical surfaces including dry, wet, slippery, smooth, and semi-smooth ones on ground and also under water with certain load-carrying capability. We show that the vertical climbing speed can reach about 286 mm/min (1.6 body length/min) while carrying over 200 g object (over 5 times the weight of ACSR itself) during climbing on ground and under water. This research could largely push the boundaries of soft robot capabilities and multifunctionality in window cleaning and underwater inspection under harsh environment.

10.
Adv Mater ; 30(20): e1706390, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29603420

RESUMEN

Stretchable conductors are essential components of wearable electronics. However, such materials typically sacrifice their electronic conductivity to achieve mechanical stretchability and elasticity. Here, the nanoconfinement and air/water interfacial assembly is explored to grow freestanding mechanical endurance conducting polymer nanosheets that can be stretched up to 2000% with simultaneously high electrical conductivity, inspired by kirigami. Such stretchable conductors show remarkable electronic and mechanical reversibility and reproducibility under more than 1000 cycle durability tests with 2000% deformability, which can be accurately predicted using finite element modeling. The conductivity of nanoconfined freestanding conductor nanosheets increases by three orders of magnitude from 2.2 × 10-3 to 4.002 S cm-1 is shown, due to the charge-transfer complex formation between polymer chain and halogen, while the electrical conductance of the stretchable kirigami nanosheets can be maintained over the entire strain regime. The nanoconfined polymer nanosheets can also act as a sensor capable of sensing the pressure with high durability and real-time monitoring.

11.
Soft Matter ; 14(9): 1517-1529, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29345710

RESUMEN

We studied the wetting behavior of multiscale self-similar hierarchical wrinkled surfaces. The hierarchical surface was fabricated on poly(dimethylsiloxane) (PDMS) substrates by manipulating the sequential strain release and combined plasma/ultraviolet ozone (UVO) treatment. The generated structured surface shows an independently controlled dual-scale roughness with level-1 small-wavelength wrinkles (wavelength of 700-1500 nm and amplitude of 50-500 nm) resting on level-2 large-wavelength wrinkles (wavelength of 15-35 µm and amplitude of 3.5-5 µm), as well as accompanying orthogonal cracks. By tuning the aspect ratio of hierarchical wrinkles, the degree of wetting anisotropy in hierarchical wrinkled surfaces, defined as the contact angle difference between the parallel and perpendicular directions to the wrinkle grooves, is found to change between 3° and 9°. Through both experimental characterization (confocal fluorescence imaging) and theoretical analyses, we showed that the wetting state in the hierarchical wrinkled surface is in the Wenzel wetting state. We found that the measured apparent contact angle is larger than the theoretically predicted Wenzel contact angle, which is found to be attributed to the three-phase contact line pinning effect of both wrinkles and cracks that generates energetic barriers during the contact line motion. This is evidenced by the observed sudden drop of over 20° in the static contact angles along both perpendicular and parallel directions after slight vibration perturbation. Finally, we concluded that the observed small degree of wetting anisotropy in the hierarchical wrinkled surfaces mainly arises from the competition between orthogonal wrinkles and cracks in the contact line pinning.

12.
Mol Cell Biochem ; 441(1-2): 99-108, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28884413

RESUMEN

The long non-coding RNA (lncRNA) prostate cancer-associated ncRNA transcript 1 (PCAT-1) has been shown to promote prostate cancer cell proliferation through c-Myc and is associated with the poor prognosis of CRC patients. In the current study, it was hypothesized that the effect of PCAT-1 on the aggressiveness of CRC cells was dependent on the function of c-Myc. Human CRC cell lines Caco-2 and HT-29 were transfected with specific PCAT-1 shRNAs, and cell migration, invasiveness, and resistance to 5-fluorouracil were measured. To elucidate the role of c-Myc in PCAT-1 function, c-Myc was overexpressed in PCAT-1-silenced CRC cells and the effect of c-Myc overexpression on the aggressiveness of PCAT-1-silenced cells was detected. The results showed that knockdown of PCAT-1 in CRC cells suppressed cell motility and invasiveness, and sensitized the cells to 5-fluorouracil, as evidenced by the reduced viability and induced apoptosis in PCAT-1-silenced cells compared to the parental cells in response to 5-fluorouracil treatment. The expression of c-Myc in PCAT-1-silenced CRC cells was down-regulated, and forced expression of c-Myc partially restored the invasiveness in PCAT-1-silenced cells. In summary, the findings outlined in the current study suggest that PCAT-1 regulates the invasiveness and drug resistance in CRC cells and that PCAT-1 may promote CRC cell invasion by modulating the expression of c-Myc.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Proteínas Proto-Oncogénicas c-myc/biosíntesis , ARN Neoplásico/metabolismo , Células CACO-2 , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Técnicas de Silenciamiento del Gen , Humanos , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante , ARN Neoplásico/genética
13.
ACS Appl Mater Interfaces ; 9(51): 44938-44947, 2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-29182303

RESUMEN

Design of electronic materials with high stretchability is of great importance for realizing soft and conformal electronics. One strategy of realizing stretchable metals and semiconductors is to exploit the buckling of materials bonded to elastomers. However, the level of stretchability is often limited by the cracking and fragmentation of the materials that occurs when constrained buckling occurs while bonded to the substrate. Here, we exploit a failure mechanism, spontaneous buckling-driven periodic delamination, to achieve high stretchability in metal and silicon films that are deposited on prestrained elastomer substrates. We find that both globally periodic buckle-delaminated pattern and ordered cracking patterns over large areas are observed in the spontaneously buckle-delaminated thin films. The geometry of periodic delaminated buckles and cracking periodicity can be predicted by theoretical models. By patterning the films into ribbons with widths smaller than the predicted cracking periodicity, we demonstrate the design of crack-free and spontaneous delaminated ribbons on highly prestrained elastomer substrates, which provides a high stretchability of about 120% and 400% in Si and Au ribbons, respectively. We find that the high stretchability is mainly attributed to the largely relaxed strain in the ribbons via spontaneous buckling-driven delamination, as made evident by the small maximum tensile strain in both ribbons, which is measured to be over 100 times smaller than that of the substrate prestrain.

14.
Life Sci ; 188: 37-44, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28855110

RESUMEN

AIMS: The long non-coding RNA (lncRNA) was reported to be involved in the progress of various cancers, however, its effect in colorectal cancer (CRC) remains unknown. The goal of the present study is to investigate the function role of lncRNA PCAT-1 in colorectal cancer. MAIN METHODS: The expression of lncRNA PCAT-1 in four CRC cell lines was measured by real-time PCR, and two lncRNA PCAT-1 high expression cell lines were selected. LncRNA PCAT-1 in these two CRC cell lines was down-regulated by shRNA, and the stable transfected cells were established. Functional involvement of lncRNA PCAT-1 in proliferation and apoptosis of the two CRC cells were evaluated in vitro. Mover, the effect of lncRNA PCAT-1 in tumor proliferation was also evaluated in CRC cell xenograft. KEY FINDINGS: The results showed that down-regulation of lncRNA PCAT-1 in CRC cells inhibited proliferation, blocked cell cycle transition, and suppressed the expression of cyclins and c-myc. The apoptosis cell proportion was elevated with increased expression of pro-apoptotic proteins and decreased anti-apoptotic proteins in lncRNA PCAT-1 knock down cells. Forced over-expression of c-myc in PCAT-1 down-regulated CRC cells increased the level of cyclins. The xenograft growth in lncRNA PCAT-1 down-regulated cells was significantly inhibited along with the reduced proliferative cells. SIGNIFICANCE: Our study revealed a tumorigenic effect of lncRNA PCAT-1 in CRC cells, and this effect is partly dependent on the inhibition of c-myc.


Asunto(s)
Apoptosis , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación hacia Abajo , ARN Largo no Codificante/genética , Animales , Proteínas Reguladoras de la Apoptosis/biosíntesis , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/genética , Ciclinas/biosíntesis , Humanos , Masculino , Ratones , Proteínas Proto-Oncogénicas c-myc/biosíntesis , ARN Largo no Codificante/biosíntesis , ARN Interferente Pequeño/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
ACS Appl Mater Interfaces ; 9(34): 29345-29354, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28817253

RESUMEN

Harnessing buckling instability in soft materials offers an effective strategy to achieve multifunctionality. Despite great efforts in controlling the wrinkling behaviors of film-based systems and buckling of periodic structures, the benefits of classical plate buckling in soft materials remain largely unexplored. The challenge lies in the intrinsic indeterminate characteristics of buckling, leading to geometric frustration and random orientations. Here, we report the controllable global order in constrained buckling of arrays of parallel plates made of hydrogels and elastomers on rigid substrates. By introducing patterned cuts on the plates, the randomly phase-shifted buckling in the array of parallel plates transits to a prescribed and ordered buckling with controllable phases. The design principle for cut-directed deterministic buckling in plates is validated by both mechanics model and finite element simulation. By controlling the contacts and interactions between the buckled parallel plates, we demonstrate on-demand reconfigurable electrical and optical pathways, and the potential application in design of mechanical logic gates. By varying the local stimulus within the plates, we demonstrate that microscopic pathways can be written, visualized, erased, and rewritten macroscopically into a completely new one for potential applications such as soft reconfigurable circuits and logic devices.

16.
ACS Appl Mater Interfaces ; 9(31): 26510-26517, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28702991

RESUMEN

Smart window has immense potential for energy savings in architectural and vehicular applications, while most studies focus on the tunability of a single property of optical transmittance. Here we explore harnessing dynamically tunable hierarchical wrinkles for design of a potential multifunctional smart window with combined structural color and water droplet transport control. The self-similar hierarchical wrinkles with both nanoscale and microscale features are generated on a prestrained poly(dimethylsiloxane) elastomer through sequential strain release and multistep oxygen plasma treatment. We show that the hierarchically wrinkled elastomer displays both opaqueness and iridescent structural color. We find that restretching/releasing the elastomer leads to the reversible and repeatable switch from opaqueness to transparency, arising from the flattening of large wrinkles (micrometer scale), while a nonvanishing structural color occurs due to the nondisappearing small wrinkles (nanoscale). The unique features of combined reversible large wrinkles and irreversible small wrinkles during hierarchical wrinkling are well reproduced by corresponding finite element simulation. The criteria for generating self-similar hierarchical wrinkles is revealed through a simplified theoretical model and validated by experiments. In addition to its tunable optical property, we further show its ability in control of water droplet transport on demand through mechanical stretching and release. We find that an initially pinned water droplet on the tilted hierarchically wrinkled surface starts to slide when the surface is stretched, and becomes pinned again upon strain release. Such a process is reversible and repeatable. The hierarchically wrinkled surface could find broad potential applications not only in multifunctional smart windows with additional features of aesthetics and water collection, but in microfluidics, design of slippery surfaces, and directional water transportation.

17.
Adv Mater ; 29(10)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28026066

RESUMEN

Programmable kirigami metamaterials with controllable local tilting orientations on demand through prescribed notches are constructed through a new approach of kiri-kirgami, and their actuation of pore opening via both mechanical stretching and temperature, along with their potential application as skins for energy-saving buildings, is discussed.

18.
Adv Mater ; 27(44): 7181-90, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26461470

RESUMEN

Applying hierarchical cuts to thin sheets of elastomer generates super-stretchable and reconfigurable metamaterials, exhibiting highly nonlinear stress-strain behaviors and tunable phononic bandgaps. The cut concept fails on brittle thin sheets due to severe stress concentration in the rotating hinges. By engineering the local hinge shapes and global hierarchical structure, cut-based reconfigurable metamaterials with largely enhanced strength are realized.


Asunto(s)
Elastómeros , Fenómenos Mecánicos , Dimetilpolisiloxanos/química , Elastómeros/química , Ingeniería , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...