Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339002

RESUMEN

The ever-increasing applications of metabarcoding analyses for environmental samples demand a well-designed assessment of the stability of DNA and RNA contained in cells that are deposited or buried in marine sediments. We thus conducted a qPCR quantification of the DNA and RNA in the vegetative cells of three microalgae entrapped in facsimile marine sediments and found that >90% of DNA and up to 99% of RNA for all microalgal species were degraded within 60 days at 4 °C. A further examination of the potential interference of the relic DNA of the vegetative cells with resting cyst detection in sediments was performed via a metabarcoding analysis in artificial marine sediments spiked with the vegetative cells of two Kareniaceae dinoflagellates and the resting cysts of another three dinoflagellates. The results demonstrated a dramatic decrease in the relative abundances of the two Kareniaceae dinoflagellates in 120 days, while those of the three resting cysts increased dramatically. Together, our results suggest that a positive detection of microalgae via metabarcoding analysis in DNA or RNA extracted from marine sediments strongly indicates the presence of intact or viable cysts or spores due to the rapid decay of relic DNA/RNA. This study provides a solid basis for the data interpretation of metabarcoding surveys, particularly in resting cyst detection.


Asunto(s)
Dinoflagelados , Microalgas , Microalgas/genética , ADN , Dinoflagelados/genética , Código de Barras del ADN Taxonómico/métodos , ARN/genética , Estabilidad del ARN , Sedimentos Geológicos
2.
Harmful Algae ; 129: 102499, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951615

RESUMEN

The impacts of harmful algal blooms (HABs) on economies, public health, ecosystems, and aquaculture across the globe have all increased in recent decades, and this has been acutely the case in China. Here, we review the history of HABs and HABs research in China, as well as recent trends in HABs and future prospects of HAB science in China. The most updated analyses demonstrated that the number of HAB events, the number of HAB species, the aerial coverage of HABs, and the impacts of HABs in Chinese waters during the 21st century were all higher than that during the last two decades of the 20th century. The increase in the number of HABs in China has been significantly correlated with the increased discharge of ammonium and total phosphorus into coastal waters (p < 0.01 for both). Notable newly recognized events this century have included chronic HABs caused by Prorocentrum donghaiense and Karenia mikimotoi, a paralytic shellfish poisoning event caused by Gymnodinium catenatum that sickened 80 people, brown tides caused by Aureococcus anophagefferens, green tides caused by Ulva prolifera, golden tides caused by Sargassum horneri, and the disruption of a nuclear power plant caused by a bloom of Phaeocystis globosa. A series of key discoveries regarding HABs has been made this century including documentation of nearly all known HAB toxins in Chinese waters, discovery of novel cyst-formation and/or life stages of multiple HABs-causing species, identification of the chemical and physical oceanographic drivers of multiple HABs including those formed by P. donghaiense, K. mikimotoi, and U. prolifera, and the successful mitigation of HABs via the use of modified clay approaches. Future research prospects highlighted include the use of macroalgae as a means to prevent, mitigate, and control (PCM) HABs and the process by which multi-disciplinary studies involving molecular approaches (omics), remote in situ detection, artificial intelligence, and mega-data analyses might be used to develop refined and realistic HAB forecasting platforms. Collectively, this review demonstrates the significant evolution of HAB science since the 20th century in China and demonstrates that while HABs in China are complex and widespread, recent and on-going discoveries make the development of detailed understanding and effective measures to mitigate the negative effects of HABs a hopeful outcome in the coming years.


Asunto(s)
Dinoflagelados , Floraciones de Algas Nocivas , Humanos , Ecosistema , Inteligencia Artificial , China
3.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36675187

RESUMEN

In numerous studies, researchers have explored the interactions between fungi and their hosting biota in terrestrial systems, while much less attention has been paid to the counterpart interactions in aquatic, and particularly marine, ecosystems. Despite the growing recognition of the potential functions of fungi in structuring phytoplankton communities, the current insights were mostly derived from phytoplankton hosts, such as diatoms, green microalgae, and cyanobacteria. Dinoflagellates are the second most abundant group of phytoplankton in coastal marine ecosystems, and they are notorious for causing harmful algal blooms (HABs). In this study, we used high-throughput amplicon sequencing to capture global snapshots of specific fungal assemblages associated with laboratory-cultured marine dinoflagellate. We investigated a total of 13 clonal cultures of the dinoflagellate Karlodinium veneficum that were previously isolated from 5 geographic origins and have been maintained in our laboratory from several months to more than 14 years. The total recovered fungal microbiome, which consisted of 349 ASVs (amplicon sequencing variants, sequences clustered at a 100% sequence identity), could be assigned to 4 phyla, 18 classes, 37 orders, 65 families, 97 genera, and 131 species. The fungal consortium displayed high diversity and was dominated by filamentous fungi and ascomycetous and basidiomycetous yeasts. A core set of three genera among all the detected fungi was constitutively present in the K. veneficum strains isolated from geographically distant regions, with the top two most abundant genera, Thyridium and Pseudeurotium, capable of using hydrocarbons as the sole or major source of carbon and energy. In addition, fungal taxa previously documented as endophytes in other hosts were also found in all tested strains of K. veneficum. Because host-endophyte interactions are highly variable and strongly case-dependent, these fungal taxa were not necessarily genuine endosymbionts of K. veneficum; instead, it raised the possibility that dinoflagellates could potentially serve as an alternative ecological niche for the colonization of fungal endophytes. Our findings lay the foundation for further investigations into the potential roles or functions of fungi in the regulation of the growth dynamics and HABs of marine dinoflagellates in the field.


Asunto(s)
Dinoflagelados , Micobioma , Humanos , Dinoflagelados/genética , Endófitos , Ecosistema , Floraciones de Algas Nocivas , Fitoplancton
4.
Artículo en Inglés | MEDLINE | ID: mdl-35457312

RESUMEN

Interactions between algae and bacteria represent an important inter-organism association in aquatic environments, which often have cascading bottom-up influences on ecosystem-scale processes. Despite the increasing recognition of linkages between bacterioplankton and dynamics of dinoflagellate blooms in the field, knowledge about the forms and functions of dinoflagellate-bacteria associations remains elusive, mainly due to the ephemeral and variable conditions in the field. In this study, we characterized the bacterial community associated with laboratory cultures of 144 harmful algal strains, including 130 dinoflagellates (covering all major taxonomic orders of dinoflagellates) and 14 non-dinoflagellates, via high-throughput sequencing for 16S rRNA gene amplicons. A total of 4577 features belonging to bacteria kingdom comprising of 24 phyla, 55 classes, 134 orders, 273 families, 716 genera, and 1104 species were recovered from the algal culture collection, and 3 phyla (Proteobacteria, Bacteroidetes, and Firmicutes) were universally present in all the culture samples. Bacterial communities in dinoflagellates cultures exhibited remarkable conservation across different algal strains, which were dominated by a relatively small number of taxa, most notably the γ-proteobacteria Methylophaga, Marinobacter and Alteromonas. Although the bacterial community composition between dinoflagellates and non-dinoflagellate groups did not show significant difference in general, dinoflagellates harbored a large number of unique features (up to 3811) with relatively low individual abundance and enriched in the potential methylotrophs Methylophaga. While the bacterial assemblages associated with thecate and athecate dinoflagellates displayed no general difference in species composition and functional groups, athecate dinoflagellates appeared to accommodate more aerobic cellulolytic members of Actinobacteria, implying a more possible reliance on cellulose utilization as energy source. The extensive co-occurrence discovered here implied that the relationships between these algal species and the bacterial consortia could be viewed as either bilaterally beneficial (i.e., mutualism) or unilaterally beneficial at least to one party but virtually harmless to the other party (i.e., commensalism), whereas both scenarios support a long-term and stable co-existence rather than an exclusion of one or the other. Our results demonstrated that dinoflagellates-associated bacterial communities were similar in composition, with enrichment of potential uncultured methylotrophs to one-carbon compounds. This work enriches the knowledge about the fundamental functions of bacteria consortia associated with the phycospheres of dinoflagellates and other HABs-forming microalgae.


Asunto(s)
Dinoflagelados , Bacterias/genética , Dinoflagelados/genética , Ecosistema , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Filogenia , ARN Ribosómico 16S/genética
5.
J Phycol ; 54(5): 744-761, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30144373

RESUMEN

The genus Gymnodinium includes many morphologically similar species, but molecular phylogenies show that it is polyphyletic. Eight strains of Gymnodinium impudicum, Gymnodinium dorsalisulcum and a novel Gymnodinium-like species from Chinese and Malaysian waters and the Mediterranean Sea were established. All of these strains were examined with light microscopy, scanning electron microscopy and transmission electron microscopy. SSU, LSU and internal transcribed spacers rDNA sequences were obtained. A new genus, Wangodinium, was erected to incorporate strains with a loop-shaped apical structure complex (ASC) comprising two rows of amphiesmal vesicles, here referred to as a new type of ASC. The chloroplasts of Wangodinium sinense are enveloped by two membranes. Pigment analysis shows that peridinin is the main accessory pigment in W. sinense. Wangodinium differs from other genera mainly in its unique ASC, and additionally differs from Gymnodinium in the absence of nuclear chambers, and from Lepidodinium in the absence of Chl b and nuclear chambers. New morphological information was provided for G. dorsalisulcum and G. impudicum, e.g., a short sulcal intrusion in G. dorsalisulcum; nuclear chambers in G. impudicum and G. dorsalisulcum; and a chloroplast enveloped by two membranes in G. impudicum. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference with independent SSU and LSU rDNA sequences. Our results support the classification of Wangodinium within the Gymnodiniales sensu stricto clade and it is close to Lepidodinium. Our results also support the close relationship among G. dorsalisulcum, G. impudicum, and Barrufeta. Further research is needed to assign these Gymnodinium species to Barrufeta or to erect new genera.


Asunto(s)
Dinoflagelados/citología , Dinoflagelados/genética , Filogenia , China , Cloroplastos/ultraestructura , ADN de Algas/análisis , ADN Protozoario/análisis , ADN Ribosómico/análisis , Dinoflagelados/clasificación , Dinoflagelados/ultraestructura , Francia , Malasia , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
6.
J Phycol ; 53(1): 118-130, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27779759

RESUMEN

To date, the life stages of pelagophytes have been poorly described. This study describes the ability of Aureoumbra lagunensis to enter a resting stage in response to environmental stressors including high temperature, nutrient depletion, and darkness as well as their ability to revert from resting cells back to vegetative cells after exposure to optimal light, temperature, and nutrient conditions. Resting cells became round in shape and larger in size, filled with red accumulation bodies, had smaller and fewer plastids, more vacuolar space, contained lower concentrations of chl a and RNA, displayed reduced photosynthetic efficiency, and lower respiration rates relative to vegetative cells. Analysis of vegetative and resting cells using Raman microspectrometry indicated resting cells were enriched in sterols within red accumulation bodies and were depleted in pigments relative to vegetative cells. Upon reverting to vegetative cells, cells increased their chl a content, photosynthetic efficiency, respiration rate, and growth rate and lost accumulation bodies as they became smaller. The time required for resting cells to resume vegetative growth was proportional to both the duration and temperature of dark storage, possibly due to higher metabolic demands on stored energy (sterols) reserves during longer period of storage and/or storage at higher temperature (20°C vs. 10°C). Resting cells kept in the dark at 10°C for 7 months readily reverted back to vegetative cells when transferred to optimal conditions. Thus, the ability of Aureoumbra to form a resting stage likely enables them to form annual blooms within subtropic ecosystems, resist temperature extremes, and may facilitate geographic expansion via anthropogenic transport.


Asunto(s)
Floraciones de Algas Nocivas , Estramenopilos/fisiología , Microscopía Electrónica de Transmisión , Estramenopilos/química , Estramenopilos/crecimiento & desarrollo , Estramenopilos/ultraestructura
7.
Chem Biodivers ; 13(2): 249-52, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26880439

RESUMEN

Sterol and fatty acid compositions were determined for Cochlodinium polykrikoides, a toxic, bloom-forming dinoflagellate of global significance. The major sterols were dinosterol (40% of total sterols), dihydrodinosterol (32%), and the rare 4α-methyl Δ(8(14)) sterol, amphisterol (23%). A minor sterol, 4α-methylergost-24(28)-enol was also detected (5.0%). The fatty acids had a high proportion of PUFAs (47%), consisting mainly of EPA (20%) and the relatively uncommon octadecapentaenoic acid (18 : 5, 22%). While unlikely to be responsible for toxicity to fish, these lipids may contribute to the deleterious effects of this alga to invertebrates.


Asunto(s)
Dinoflagelados/química , Ácidos Grasos/análisis , Esteroles/análisis , Ácidos Grasos Insaturados/análisis , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía de Resonancia Magnética
8.
Appl Environ Microbiol ; 82(4): 1114-1125, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26637596

RESUMEN

Cochlodinium polykrikoides is a cosmopolitan dinoflagellate that is notorious for causing fish-killing harmful algal blooms (HABs) across North America and Asia. While recent laboratory and ecosystem studies have definitively demonstrated that Cochlodinium forms resting cysts that may play a key role in the dynamics of its HABs, uncertainties regarding cyst morphology and detection have prohibited even a rudimentary understanding of the distribution of C. polykrikoides cysts in coastal ecosystems. Here, we report on the development of a fluorescence in situ hybridization (FISH) assay using oligonucleotide probes specific for the large subunit (LSU) ribosomal DNA (rDNA) of C. polykrikoides. The LSU rDNA-targeted FISH assay was used with epifluorescence microscopy and was iteratively refined to maximize the fluorescent reaction with C. polykrikoides and minimize cross-reactivity. The final LSU rDNA-targeted FISH assay was found to quantitatively recover cysts made by North American isolates of C. polykrikoides but not cysts formed by other common cyst-forming dinoflagellates. The method was then applied to identify and map C. polykrikoides cysts across bloom-prone estuaries. Annual cyst and vegetative cell surveys revealed that elevated densities of C. polykrikoides cysts (>100 cm(-3)) during the spring of a given year were spatially consistent with regions of dense blooms the prior summer. The identity of cysts in sediments was confirmed via independent amplification of C. polykrikoides rDNA. This study mapped C. polykrikoides cysts in a natural marine setting and indicates that the excystment of cysts formed by this harmful alga may play a key role in the development of HABs of this species.


Asunto(s)
Dinoflagelados/aislamiento & purificación , Estuarios , Sedimentos Geológicos/parasitología , Hibridación Fluorescente in Situ/métodos , Esporas Protozoarias/aislamiento & purificación , ADN Protozoario/genética , ADN Ribosómico/genética , Dinoflagelados/genética , Microscopía Fluorescente , América del Norte , Sondas de Oligonucleótidos/genética , ARN Ribosómico/genética , Estaciones del Año , Sensibilidad y Especificidad , Esporas Protozoarias/genética
9.
ISME J ; 7(7): 1333-43, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23466703

RESUMEN

The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated by the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95% during the peak of blooms to 0.05 nM. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.


Asunto(s)
Agua de Mar/parasitología , Selenio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Estramenopilos/fisiología , Bioquímica , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Elementos Transponibles de ADN/genética , Ecología , Genes Protozoarios/genética , Proteoma , Selenio/farmacología , Estramenopilos/efectos de los fármacos , Estramenopilos/genética , Estramenopilos/crecimiento & desarrollo , Estramenopilos/metabolismo , Oligoelementos/farmacología
10.
Proc Natl Acad Sci U S A ; 108(11): 4352-7, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21368207

RESUMEN

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.


Asunto(s)
Ecosistema , Eucariontes/genética , Genómica/métodos , Secuencia de Aminoácidos , Bacterias/metabolismo , Bacterias/efectos de la radiación , Biodegradación Ambiental/efectos de la radiación , Enzimas/metabolismo , Eucariontes/enzimología , Genoma/genética , Luz , Filogenia , Fitoplancton/genética , Fitoplancton/efectos de la radiación , Proteínas/química , Especificidad de la Especie
11.
Water Res ; 36(5): 1313-23, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11902786

RESUMEN

An equilibrium model for describing the relationships between important parameters for heavy metal sorption by algae was derived through a thermodynamics approach. In this model, both the removal efficiency of heavy metal and metal adsorption per unit algal biomass are considered to be simple functions of the ratio of algal biomass concentration to the initial metal concentration for selected conditions, i.e. as at constant pH and temperature. The model was found to fit the experimental results well (judged by the correlation-regression coefficient, R2), for the adsorption of cadmium, copper, lead and zinc by two algal species, Oocystis sp. (both living and non-living) and Chlorococcum sp. The applicability of the model was also supported by the reprocessed results of experimental data given in the literature, i.e. for the metal species, Cd, Pb, Cu and Ag, the algal species, Chlorella vulgaris, Scenedesmus quadricauda and Cladophora crispata, and both batch and continuous fixed-bed reactors. It was also demonstrated that the model could be applied over a broad range of pH for cadmium and copper adsorption by Oocystis sp. However, the model was not applicable at very low and high pH levels, due to negligible adsorption and precipitation, respectively.


Asunto(s)
Eucariontes/fisiología , Metales Pesados/farmacocinética , Modelos Teóricos , Contaminantes del Agua/farmacocinética , Adsorción , Biomasa , Concentración de Iones de Hidrógeno , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...