Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(10): e30307, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38774331

RESUMEN

The common strain black carp (Cyprinus carpio var. baisenensis) is a culturally important carp strain that is raised and cultured in Guangxi Province, China. Its color reflects the interactions between the Burau people and their surrounding environment. The population of the common carp black strain was isolated and cultured in a rice-fish integration system. To explore the genetic diversity and protection of germplasm resources, we analyzed mitochondrial DNA (mtDNA) sequences, specifically the displacement loop (D-loop) and cytochrome b (Cytb), using single-nucleotide polymorphisms (SNP). We compared these sequences with those from four other local common carp populations. The study included a total of 136 adult common carps from five strain populations: the common black carp strain (HJ = 31), Jian (F = 30), Heilongjiang (H = 10), Songpu (S = 31), and Saijiang (SJ = 34). The results of the Cytb and D-loop analyses showed that the Heilongjiang carp (H) and Saijiang (SJ) populations had the highest levels of haplotype diversity (0.867 ± 0.034785) and nucleotide diversity (π = 0.0063 ± 0.000137 and 0.0093 ± 0.000411), respectively. On the other hand, the Common carp black strain population (HJ) exhibited the lowest haplotype diversity in both Cytb and D-loop, with haplotype 2 being the most commonly observed among the populations. Private haplotypes dominated the five common carp populations, which were significantly different at P<0.001. Furthermore, analyzing the coefficient of genetic differentiation (Fst), the highest genetic difference was observed between Saijiang (SJ) and Heilongjiang (H) (Fst = 0.963), whereas the lowest was observed between Songpu (S) and the Common carp black strain population (HJ) (Fst = 0.019) for the Cytb gene sequences. For the D-loop, the Common carp black strain population (HJ) and Songpu (S) (Fst = 0.7) had the highest values, and Heilongjiang (H) and Common black carp strain (HJ) had an Fst of 0.125. Additionally, the AMOVA analysis revealed a higher level of variance for the Cytb and D-loop genes, indicating lower genetic diversity within the local carp community. On the other hand, the phylogenetic tree analysis showed that the five carp populations were closely related and formed a distinct cluster. The distinct cluster of populations suggests a common ancestor or recent gene flow, possibly due to geographic proximity or migration history, and unique genetic characteristics, possibly due to adaptations or selective pressures. The results of this study provide valuable insights into the genetic diversity of the common strain black carp, which can have implications for conservation, breeding programs, evolutionary studies, and fisheries management.

2.
Antioxidants (Basel) ; 13(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38790629

RESUMEN

Eriocheir sinensis, a key species in China's freshwater aquaculture, is threatened by various diseases, which were verified to be closely associated with oxidative stress. This study aimed to investigate the response of E. sinensis to hydrogen peroxide (H2O2)-induced oxidative stress to understand the biological processes behind these diseases. Crabs were exposed to different concentrations of H2O2 and their antioxidant enzyme activities and gene expressions for defense and immunity were measured. Results showed that activities of antioxidant enzymes-specificallysuperoxide dismutase (SOD), catalase (CAT), total antioxidant capacity(T-AOC), glutathione (GSH), and glutathione peroxidase (GSH-Px)-varied with exposure concentration and duration, initially increasing then decreasing. Notably, SOD, GSH-Px, and T-AOC activities dropped below control levels at 96 h. Concurrently, oxidative damage markers, including malondialdehyde (MDA), H2O2, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, increased with exposure duration. The mRNA expression of SOD, CAT, and GSH-Px also showed an initial increase followed by a decrease, peaking at 72 h. The upregulation of phenoloxidaseloxidase (proPO) and peroxinectin (PX) was also detected, but proPO was suppressed under high levels of H2O2. Heat shock protein 70 (HSP70) expression gradually increased with higher H2O2 concentrations, whereas induced nitrogen monoxide synthase (iNOS) was upregulated but decreased at 96 h. These findings emphasize H2O2's significant impact on the crab's oxidative and immune responses, highlighting the importance of understanding cellular stress responses for disease prevention and therapy development.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38307449

RESUMEN

Eriocheir sinensis megalopa has a special life history of migrating from seawater to freshwater. In order to investigate how the megalopa adapt themselves to the freshwater environment, we designed an experiment to reduce the salinity of water from 30 ppt to 0 at rates of 30 ppt, 15 ppt, 10 ppt, and 5 ppt per 24 h to evaluate the effects of different degrees of hyposaline stress on the osmotic regulation ability and antioxidant system of the megalopa. Experimental results related to osmotic pressure regulation show that the gill tissue of megalopa in the treatment group of 30 ppt/24 h rapid reduction of salinity was damaged, while in the treatment group of 5 ppt/24 h it was intact. At the same time, the experiment also found that in each treatment group with different salinity reduction rates, compared with the control salinity, the NKA activity of megalopa increased significantly after the salinity was reduced to 20 ppt (p < 0.05). In addition, two genes involved in chloride ion transmembrane absorption have different expression patterns in the treatment groups with different salinity reduction rates. Among them, Clcn2 was significantly highly expressed only in the rapid salinity reduction intervals of 30 ppt/24 h and 15 ppt/24 h (p < 0.05). Slc26a6 was significantly highly expressed only in the slow salinity reduction intervals of 10 ppt/24 h and 5 ppt/24 h (p < 0.05). On the other hand, the results of antioxidant and apoptosis related experiments showed that in all treatment groups with different rates of salinity reduction, the activities of T-AOC, GSH-PX, and CAT basically increased significantly after salinity reduction compared to the control salinity. Moreover, the activities of T-AOC and CAT were significantly higher in the 10 ppt/24 h and 5 ppt/24 h treatment groups than in the 30 ppt/24 h and 15 ppt/24 h treatment groups. Finally, the experimental results related to apoptosis showed that the expression trends of Capase3 and Bax-2 were basically the same in the treatment groups with different salinity reduction rates, and their expressions were significantly higher in the 10 ppt/24 h and 5 ppt/24 h treatment groups than in the 30 ppt/24 h and 15 ppt/24 h treatment groups. In summary, the present study found that megalopa had strong hyposaline tolerance and were able to regulate osmolality at different rates of salinity reduction, but the antioxidant capacity differed significantly between treatment groups, with rapid salinity reduction leading to oxidative damage in the anterior gills and reduced antioxidant enzyme activity and apoptosis levels.


Asunto(s)
Antioxidantes , Osmorregulación , Animales , Antioxidantes/metabolismo , Salinidad , Equilibrio Hidroelectrolítico , Apoptosis , Branquias/metabolismo
4.
Sci Total Environ ; 917: 170393, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38280587

RESUMEN

Hydrogen peroxide (H2O2), a prevalent reactive oxygen species (ROS) found in natural aquatic environments, has garnered significant attention for its potential toxicity in fish. However, the molecular mechanisms underlying this toxicity are not yet comprehensively understood. This study aimed to assess H2O2-induced liver dysfunction in common carp (Cyprinus carpio) and elucidate the underlying molecular mechanisms via biochemical and transcriptomic analyses. Common carp were divided into normal control (NC) and H2O2-treated groups (1 mM H2O2), the latter of which was exposed to H2O2 for 1 h per day over a period of 14 days. Serum biochemical analyses indicated that exposure to H2O2 resulted in moderate liver damage, characterized by elevated alanine aminotransferase (ALT) activity and lowered albumin (Alb) level. Concurrently, H2O2 exposure induced oxidative stress and modified the hepatic metabolic enzyme levels. Transcriptome analysis highlighted that 1358 and 1188 genes were significantly downregulated and upregulated, respectively, in the H2O2-treated group. These differentially expressed genes (DEGs) were significantly enriched in protein synthesis and a variety of metabolic functions such as peptide biosynthetic processes, protein transport, ribonucleoprotein complex biogenesis, oxoacid metabolic processes, and tricarboxylic acid metabolic processes. Dysregulation of protein synthesis is principally associated with the downregulation of three specific pathways: ribosome biogenesis, protein export, and protein processing in the endoplasmic reticulum (ER). Furthermore, metabolic abnormalities were primarily characterized by inhibition of the citrate cycle (TCA) and fatty acid biosynthesis. Significantly, anomalies in both protein synthesis and metabolic function may be linked to aberrant regulation of the insulin signaling pathway. These findings offer innovative insights into the mechanisms underlying H2O2 toxicity in aquatic animals, contributing to the assessment of ecological risks.


Asunto(s)
Carpas , Hepatopatías , Animales , Peróxido de Hidrógeno/farmacología , Carpas/metabolismo , Estrés Oxidativo , Perfilación de la Expresión Génica , Hígado/metabolismo , Hepatopatías/metabolismo
5.
Sci Data ; 10(1): 843, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036563

RESUMEN

To gain a deeper understanding of the genetic factors influencing the growth and development of Eriocheir sinensis, a well-known species of hairy crab found in Yangcheng Lake, this study focused on the de novo genome and full-length transcriptome information of the selected subjects. Specifically, Yangcheng Lake hairy crabs were chosen as the experimental samples. Initially, a genome analysis was performed, resulting in the identification of gene fragments with a combined length of 1266,092,319 bp. Subsequently, a transcriptome analysis was conducted on a mixture of tissues from four different sites, namely muscle, brain, eye, and heart, to further investigate the genetic characteristics at the transcriptome level. The Pacific Biosciences (Pacio) single-molecule real-time sequencing system generated a total of 36.93 G sub-fragments and 175,90041 effective inserts. This research contributes to the indirect comprehension of genetic variations underlying individual traits. Furthermore, a comparison of the obtained data with relevant literature emphasizes the advantages of this study and establishes a basis for further investigations on the Chinese mitten crab.


Asunto(s)
Braquiuros , Perfilación de la Expresión Génica , Transcriptoma , Humanos , Genoma , Genómica , Braquiuros/genética
6.
Mar Biotechnol (NY) ; 25(6): 1136-1146, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923816

RESUMEN

Transposable elements (TEs) are mobile genetic elements that exist in the host genome and exert considerable influence on the evolution of the host genome. Since crustaceans, including decapoda, are considered ideal models for studying the relationship between adaptive evolution and TEs, TEs were identified and classified in the genomes of eight decapoda species and one diplostraca species (as the outgroup) using two strategies, namely homology-based annotation and de novo annotation. The statistics and classification of TEs showed that their proportion in the genome and their taxonomic composition in decapoda were different. Moreover, correlation analysis and transcriptome data demonstrated that there were more PIF-Harbinger TEs in the genomes of Eriocheir sinensis and Scylla paramamosain, and the expression patterns of PIF-Harbingers were significantly altered under air exposure stress conditions. These results signaled that PIF-Harbingers expanded in the genome of E. sinensis and S. paramamosain and might be related to their air exposure tolerance levels. Meanwhile, sequence alignment revealed that some Jockey-like sequences (JLSs) with high similarity to specific regions of the White spot syndrome virus (WSSV) genome existed in all eight decapod species. At the same time, phylogenetic comparison exposed that the phylogenetic tree constructed by JLSs was not in agreement with that of the species tree, and the distribution of each branch was significantly different. The abovementioned results signaled that these WSSV-specific JLSs might transfer horizontally and contribute to the emergence of WSSV. This study accumulated data for expanding research on TEs in decapod species and also provided new insights and future direction for the breeding of stress-resistant and disease-resistant crab breeds.


Asunto(s)
Decápodos , Virus del Síndrome de la Mancha Blanca 1 , Animales , Elementos Transponibles de ADN/genética , Filogenia , Genómica , Virus del Síndrome de la Mancha Blanca 1/genética , Decápodos/genética , Evolución Molecular
7.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37762400

RESUMEN

The substrate in the aquatic environment plays a crucial role in nutrient deposition and recovery for the growth of aquatic organisms. In order to optimize the culture medium of Procambarus Clarkii, culture media from different sources were selected in this study to explore their effects on the growth and immune performance of red swamp crayfish. The results showed that the weight gain rate (WGR), body length growth rate (BLGR) and specific growth rate (SGR) in group I2 were the highest, followed by group I1 and group I3. The WGR and SGR of crayfish in the I1 and I2 groups were significantly higher than those in the I3 group (p < 0.05). The activities of acid phosphatase (ACP), alkaline phosphatase (AKP) and superoxide dismutase (SOD) were the highest in group I2, followed by group I3, and the lowest in group I1. The expression trends in growth-related genes, nuclear hormone receptor (E75), molt-inhibiting hormone (MIH) and chitinase genes were similar, and the expression levels in the I2 group were higher than those in the I1 and I3 groups. It was noted that the expression levels of E75 and MIH genes in the I2 group were significantly higher than those in the I3 group (p < 0.05). α diversity analysis of 16S rRNA data showed that there was no statistically significant difference in the abundance of intestinal flora among the three culture substrate groups. The ß diversity in the Xitangni group, crayfish Tangni group and Shuitangni group was significantly different. These changes in microbiota suggest that using different substrates to culture crayfish leads to differences in gut microbiota diversity. To sum up, the growth in crayfish and immune performance influenced by the culture substrate condition and aquatic breeding sediment substrates, rather than crab pool and paddy field pond sediment substrates, showed a better effect.


Asunto(s)
Astacoidea , Quitinasas , Animales , ARN Ribosómico 16S/genética , Fosfatasa Alcalina , Colorantes , Medios de Cultivo
8.
Front Physiol ; 14: 1163055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520823

RESUMEN

The change in temperature will change the composition of intestinal microorganisms of juvenile Eriocheir sinensis, and the composition of intestinal microorganisms will affect the growth and development of juvenile crabs. In order to explore the relationship between intestinal microorganisms and growth of E. sinensis at different temperatures, the status of growth and intestinal microflora of juvenile E. sinensis reared at different water temperatures (15 °C, 23 °C, and 30 °C) were compared in this study. The results showed that the respective survival rate of juvenile E. sinensis in the three water temperature groups was 100%, 87.5%, and 64.44%. Moreover, the molting rate increased with an increase in water temperature, which was at 0%, 10%, and 71.11% for the three respective temperature groups. The average weight gain rate showed an overall increasing trend with the increase of water temperature. Moreover, the final fatness of the crabs in the 30 °C water temperature group was significantly lower than that in the 15 °C and 23 °C groups (p < 0.05); there was no significant difference in the liver-to-body ratio among the three groups. The results of the alpha diversity analysis of the 16S rRNA data revealed that there was no significant difference in the intestinal microbial abundance among the three water temperature groups; however, the intestinal microbial diversity in the 23 °C water temperature group was significantly lower than that in the 15 °C and 30 °C groups. At the phylum level, the dominant flora of the three groups was Firmicutes, Proteobacteria, and Bacteroidota. At the genus level, the abundance of Parabacteroides and Aeromonas in the intestine of the crabs in the 30 °C water temperature group was significantly higher than that in the 15 °C and 23 °C groups (p < 0.05). The function prediction showed that the main functional diversity of intestinal microflora of juvenile E. sinensis in the three water temperature groups was similar and mainly involved in metabolic-related functions, but there were still differences in the effects of water temperature on functional pathways such as metabolism, immunity, and growth among each group, either promoting or inhibiting. In conclusion, different water temperatures can affect the composition and function of intestinal flora of E. sinensis, and 23 °C-30 °C is the optimal water temperature for the growth of juvenile E. sinensis.

9.
Cells ; 12(9)2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37174728

RESUMEN

Adipose tissue is critical to the growth, development, and physiological health of animals. Reference genes play an essential role in normalizing the expression of mRNAs. Tissue-specific genes are preferred for their function and expression in specific tissues or cell types. Identification of these genes contributes to understanding the tissue-gene relationship and the etiology and discovery of new tissue-specific targets. Therefore, reference genes and tissue-specific genes in the adipose tissue of Aplodinotus grunniens were identified to explore their function under exogenous starvation (1 d, 2 w, 6 w) and hypothermic stress (18 °C and 10 °C for 2 d and 8 d) in this study. Results suggest that 60SRP was the most stable reference gene in adipose tissue. Meanwhile, eight genes were validated as tissue-specific candidates from the high-throughput sequencing database, while seven of them (ADM2, ß2GP1, CAMK1G, CIDE3, FAM213A, HSL, KRT222, and NCEH1) were confirmed in adipose tissue. Additionally, these seven tissue-specific genes were active in response to starvation and hypothermic stress in a time- or temperature-dependent manner. These results demonstrate that adipose-specific genes can be identified using stable internal reference genes, thereby identifying specific important functions under starvation and hypothermic stress, which provides tissue-specific targets for adipose regulation in A. grunniens.


Asunto(s)
Hipotermia , Perciformes , Animales , Hipotermia/genética , Tejido Adiposo , Temperatura , Agua Dulce
10.
Genes (Basel) ; 14(5)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37239459

RESUMEN

The reference gene expression is not always stable under different experimental conditions, and screening of suitable reference genes is a prerequisite in quantitative real-time polymerase chain reaction (qRT-PCR). In this study, we investigated gene selection, and the most stable reference gene for the Chinese mitten crab (Eriocheir sinensis) was screened under the stimulation of Vibrio anguillarum and copper ions, respectively. Ten candidate reference genes were selected, including arginine kinase (AK), ubiquitin-conjugating enzyme E2b (UBE), glutathione S-transferase (GST), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), elongation factor 1α (EF-1α), α-tubulin (α-TUB), heat shock protein 90 (HSP90), ß-actin (ß-ACTIN), elongation factor 2 (EF-2) and phosphoglucomutase 2 (PGM2). Expression levels of these reference genes were detected under the stimulation of V. anguillarum at different times (0 h, 6 h, 12 h, 24 h, 48 h and 72 h) and copper ions in different concentrations (11.08 mg/L, 2.77 mg/L, 0.69 mg/L and 0.17 mg/L). Four types of analytical software, namely geNorm, BestKeeper, NormFinder and Ref-Finder, were applied to evaluate the reference gene stability. The results showed that the stability of the 10 candidate reference genes was in the following order: AK > EF-1α > α-TUB > GAPDH > UBE > ß-ACTIN > EF-2 > PGM2 > GST > HSP90 under V. anguillarum stimulation. It was GAPDH > ß-ACTIN > α-TUB > PGM2 > EF-1α > EF-2 > AK > GST > UBE > HSP90 under copper ion stimulation. The expression of E. sinensis Peroxiredoxin4 (EsPrx4) was detected when the most stable and least stable internal reference genes were selected, respectively. The results showed that reference genes with different stability had great influence on the accurate results of the target gene expression. In the Chinese mitten crab (E. sinensis), AK and EF-1α were the most suitable reference genes under the stimulation of V. anguillarum. Under the stimulation of copper ions, GAPDH and ß-ACTIN were the most suitable reference genes. This study provided important information for further research on immune genes in V. anguillarum or copper ion stimulation.


Asunto(s)
Cobre , Factor 1 de Elongación Peptídica , Factor 1 de Elongación Peptídica/genética , Cobre/farmacología , Actinas/genética , Factor 2 de Elongación Peptídica/genética , Perfilación de la Expresión Génica
11.
Chemosphere ; 335: 138962, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37230304

RESUMEN

Human activities can cause zinc (Zn) contamination of aquatic environments. Zn is an essential trace metal, but effects of environmentally relevant Zn exposure on the brain-intestine axis in fish are poorly understood. Here, six-month-old female zebrafish (Danio rerio) were exposed to environmentally relevant Zn concentrations for six weeks. Zn significantly accumulated in the brain and intestine, causing anxiety-like behaviors and altered social behaviors. Zn accumulation altered levels of neurotransmitters, including serotonin, glutamate, and γ-aminobutyric acid, in the brain and intestine, and these changes were directly associated with changes in behavior. Zn caused oxidative damage and mitochondrial dysfunction, and impaired NADH dehydrogenase, thereby dysregulating the energy supply in brain. Zn exposure resulted in nucleotide imbalance and dysregulation of DNA replication and the cell cycle, potentially impairing the self-renewal of intestinal cells. Zn also disturbed carbohydrate and peptide metabolism in the intestine. These results indicate that chronic exposure to Zn at environmentally relevant concentrations dysregulates the bidirectional interaction of the brain-intestine axis with respect to neurotransmitters, nutrients, and nucleotide metabolites, thereby causing neurological disorder-like behaviors. Our study highlights the necessity to evaluate the negative impacts of chronic environmentally relevant Zn exposure on the health of humans and aquatic animals.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Femenino , Humanos , Lactante , Pez Cebra/metabolismo , Zinc/metabolismo , Encéfalo/metabolismo , Nucleótidos/metabolismo , Neurotransmisores/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-36906248

RESUMEN

Dissolved oxygen (DO) is crucial for the survival of Chinese mitten crab (Eirocheir sinensis); low DO levels adversely affect the health of these crabs. In this study, we evaluated the underlying response mechanism of E. sinensis to acute hypoxic stress by analyzing antioxidant parameters, glycolytic indicators, and hypoxia signaling factors. The crabs were exposed to hypoxia for 0, 3, 6, 12, and 24 h and reoxygenated for 1, 3, 6, 12, and 24 h. The hepatopancreas, muscle, gill, and hemolymph were sampled at different exposure times to detect the biochemical parameters and gene expression. The results showed that the activity of catalase, antioxidants, and malondialdehyde in tissues significantly increased under acute hypoxia and gradually decreased during the reoxygenation phase. Under acute hypoxic stress, glycolysis indices, including hexokinase (HK), phosphofructokinase, pyruvate kinase (PK), pyruvic acid (PA), lactate dehydrogenase (LDH), lactic acid (LA), succinate dehydrogenase (SDH), glucose, and glycogen in the hepatopancreas, hemolymph, and gills increased to varying degrees but recovered to the control levels after reoxygenation. Gene expression data showed that hypoxia signaling pathway-related genes, including hypoxia-inducible factor-1α/ß (HIF1α/ß), prolyl hydroxylase (PHD), factor inhibiting hypoxia-inducible factor (FIH), and glycolysis-related factors (HK and PK) were upregulated, showing that the HIF signaling pathway was activated under hypoxic conditions. In conclusion, acute hypoxic exposure activated the antioxidant defense system, glycolysis, and HIF pathway to respond to adverse conditions. These data contribute to elucidating the defense and adaptive mechanisms of crustaceans to acute hypoxic stress and reoxygenation.


Asunto(s)
Antioxidantes , Glucosa , Hipoxia , Animales , Antioxidantes/metabolismo , Metabolismo de los Hidratos de Carbono , Glucosa/metabolismo , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Oxígeno/metabolismo , Transducción de Señal
13.
Front Endocrinol (Lausanne) ; 14: 1293749, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250741

RESUMEN

Objective: As one of the most important environmental signals, photoperiod plays a crucial role in regulating the growth, metabolism, and survival of organisms. The photoperiod shifts with the transition of the seasons. The difference in photoperiod between summer and winter is the greatest under natural conditions. However, the effect of photoperiod on Huanghe carp (Cyprinus carpio haematopterus) was paid little attention. We investigated the impact of artificial manipulation of seasonal photoperiod on Huanghe carp by integrating growth performance, intestinal flora, and intestinal metabolome. Method: We conducted an 8-week culture experiment with summer photoperiod (14 h light:10 h dark, n = 60) as the control group and winter photoperiod (10 h light:14 h dark, n = 60) based on the natural laws. Results: Winter photoperiod provokes significant weight increases in Huanghe carp. The altered photoperiod contributed to a significant increase in triglyceride and low-density lipoprotein cholesterol levels and the gene expressions of lipid metabolism in the intestine of Huanghe carp. 16s rDNA sequencing revealed that winter photoperiod diminished intestinal flora diversity and altered the abundance. Specifically, the relative abundances of Fusobacteria and Acidobacteriota phyla were higher but Proteobacteria, Firmicutes, and Bacteroidetes phyla were reduced. Analogously, photoperiodic changes induced a significant reduction in the Pseudomonas, Vibrio, Ralstonia, Acinetobacter, and Pseudoalteromonas at the genus level. Additionally, metabolomics analysis showed more than 50% of differential metabolites were associated with phospholipids and inflammation. Microbiome and metabolome correlation analyses revealed that intestinal microbe mediated lipid metabolism alteration. Conclusion: The winter photoperiod induced intestinal flora imbalance and lipid metabolism modification, ultimately affecting the growth of Huanghe carp. This study provides new insights into the effects of seasonal photoperiodic alteration on the well-being of fish.


Asunto(s)
Carpas , Microbioma Gastrointestinal , Microbiota , Animales , Fotoperiodo , Estaciones del Año
14.
Ecotoxicol Environ Saf ; 248: 114303, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403304

RESUMEN

Zinc is an essential nutrient for life, but over-accumulation can result in toxicity. Anthropogenic activities can increase zinc concentrations in aquatic environments (e.g., to ∼0.46-1.00 mg/L), which are above the safe level of 0.1 mg/L. We investigated the behavior and physiology of zebrafish (Danio rerio) in response to environment-related exposure to zinc chloride at 0.0 (Ctrl), 1.0 (ZnCl2-low) and 1.5 (ZnCl2-high) mg/L for 6 weeks (the zinc conversion ratio of zinc chloride is ∼0.48 and the nominal (measured) values were: Ctrl, 0 (∼0.01); ZnCl2-low, 0.48 (∼0.51); ZnCl2-high, 0.72 (∼0.69) mg/L). Low-zinc exposure resulted in significantly increased locomotion and fast moving behaviors, while high-zinc exposure resulted in significantly increased aggression and freezing frequency. Single cell RNA-seq of neurons, astrocytes, and oligodendrocytes of the brain revealed expression of genes related to ion transport, neuron generation, and immunomodulation that were heterogeneously regulated by zinc exposure. Astrocyte-induced central nervous system inflammation potentially integrated neurotoxicity and behavior. Integrated analyses of brain and hepatic transcriptional signatures showed that genes (and pathways) dysregulated by zinc were associated with sensory functions, circadian rhythm, glucose and lipid metabolism, and amyloid ß-protein clearance. Our results showed that environment-related zinc contamination can be heterogeneously toxic to brain cells and can disturb coordination of brain-liver physiology. This may disrupt neurobehavior and cause a neurodegeneration-like syndrome in adult zebrafish.


Asunto(s)
Trastornos Cronobiológicos , Pez Cebra , Animales , Zinc/toxicidad , Péptidos beta-Amiloides , Encéfalo , Agresión , Hígado
15.
Front Physiol ; 13: 948511, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237529

RESUMEN

Eriocheir sinensis is widely appreciated by the surrounding population due to its culinary delicacy and rich nutrients. The E. sinensis breeding industry is very prosperous and molting is one of the important growth characteristics. Research on the regulation of molting in E. sinensis is still in the initial stages. There is currently no relevant information on the regulatory mechanisms of heart development following molting. Comparative transcriptome analysis was used to study developmental regulation mechanisms in the heart of E. sinensis at the post-molt and inter-molt stages. The results indicated that many regulatory pathways and genes involved in regeneration, anti-oxidation, anti-aging and the immune response were significantly upregulated after molting in E. sinensis. Aside from cardiac development, the differentially expressed genes (DEGs) were relevant to myocardial movement and neuronal signal transduction. DEGs were also related to the regulation of glutathione homeostasis and biological rhythms in regard to anti-oxidation and anti-aging, and to the regulation of immune cell development and the immune response. This study provides a theoretical framework for understanding the regulation of molting in E. sinensis and in other economically important crustaceans.

16.
Antioxidants (Basel) ; 11(10)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36290752

RESUMEN

High concentrations of copper (Cu2+) pose a great threat to aquatic animals. However, the mechanisms underlying the response of crustaceans to Cu2+ exposure have not been well studied. Therefore, we investigated the alterations of physiological and molecular parameters in Chinese mitten crab (Eriocheir sinensis) after Cu2+ exposure. The crabs were exposed to 0 (control), 0.04, 0.18, and 0.70 mg/L of Cu2+ for 5 days, and the hemolymph, hepatopancreas, gills, and muscle were sampled. The results showed that Cu2+ exposure decreased the antioxidative capacity and promoted lipid peroxidation in different tissues. Apoptosis was induced by Cu2+ exposure, and this activation was associated with the mitochondrial and ERK pathways in the hepatopancreas. ER stress-related genes were upregulated in the hepatopancreas but downregulated in the gills at higher doses of Cu2+. Autophagy was considerably influenced by Cu2+ exposure, as evidenced by the upregulation of autophagy-related genes in the hepatopancreas and gills. Cu2+ exposure also caused an immune response in different tissues, especially the hepatopancreas, where the TLR2-MyD88-NF-κB pathway was initiated to mediate the inflammatory response. Overall, our results suggest that Cu2+ exposure induces oxidative stress, ER stress, apoptosis, autophagy, and immune response in E. sinensis, and the toxicity may be implicated following the activation of the ERK, AMPK, and TLR2-MyD88-NF-κB pathways.

17.
Antioxidants (Basel) ; 11(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36139731

RESUMEN

Hypothermia-exposure-induced oxidative stress dysregulates cell fate and perturbs cellular homeostasis and function, thereby disturbing fish health. To evaluate the impact of hypothermia on the freshwater drum (Aplodinotus grunniens), an 8-day experiment was conducted at 25 °C (control group, Con), 18 °C (LT18), and 10 °C (LT10) for 0 h, 8 h, 1 d, 2 d, and 8 d. Antioxidant and non-specific immune parameters reveal hypothermia induced oxidative stress and immunosuppression. Liver ultrastructure alterations indicate hypothermia induced mitochondrial enlargement, nucleoli aggregation, and lipid droplet accumulation under hypothermia exposure. With the analysis of the transcriptome, differentially expressed genes (DEGs) induced by hypothermia were mainly involved in metabolism, immunity and inflammation, programmed cell death, and disease. Furthermore, the inflammatory response and apoptosis were evoked by hypothermia exposure in different immune organs. Interactively, apoptosis and inflammation in immune organs were correlated with antioxidation and immunity suppression induced by hypothermia exposure. In conclusion, these results suggest hypothermia-induced inflammation and apoptosis, which might be the adaptive mechanism of antioxidation and immunity in the freshwater drum. These findings contribute to helping us better understand how freshwater drum adjust to hypothermia stress.

18.
Front Biosci (Landmark Ed) ; 27(8): 226, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-36042164

RESUMEN

BACKGROUND: The Chinese mitten crab, Eriocheir sinensis (E. sinensis), is a popular crab species in both domestic and foreign markets. Trash fish are essential for E. sinensis breeding, but have caused serious water pollution. The municipal party committee for the main production areas of E. sinensis implemented a ban on feeding on trash fish since 2020. METHODS: In this study, we performed a culture experiment of E. sinensis feeding on trash fish and formulated feed, with comparative transcriptome analysis on hepatopancreas of E. sinensis. RESULTS: The results indicate that formulated feed causes no significant difference in growth, survival rate or content of amino acids in the muscles of adult E. sinensis. Formulated feed caused a slight downregulation of pathways involved in amino acid metabolism, development, energy metabolism and homeostasis maintenance. CONCLUSIONS: On the whole, formulated feed can serve as an undifferentiated substitution for trash fish. This study provides a theoretical foundation for optimizing research on E. sinensis feed.


Asunto(s)
Perfilación de la Expresión Génica , Hepatopáncreas , Animales , Metabolismo Energético , Hepatopáncreas/metabolismo , Transcriptoma
19.
Life (Basel) ; 12(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36013360

RESUMEN

Eriocheir sinensis is an aquatic species found distributed worldwide. It is found in the Yangtze River of China, where the commercial fishing of this valuable catadromous aquatic species has been banned. As an important member of the phylum Arthropoda, E. sinensis grows by molting over its whole lifespan. The central nervous system of Eriocheir sinensis plays an important regulatory role in molting growth. Nevertheless, there are no reports on the regulatory mechanisms of the nervous system in E. sinensis during the molting cycle. In this study, a comparative transcriptome analysis of E. sinensis thoracic ganglia at post-molt and inter-molt stages was carried out for the first time to reveal the key regulatory pathways and functional genes operating at the post-molt stage. The results indicate that pathways and regulatory genes related to carapace development, tissue regeneration, glycolysis and lipolysis and immune and anti-stress responses were significantly differentially expressed at the post-molt stage. The results of this study lay a theoretical foundation for research on the regulatory network of the E. sinensis nervous system during the post-molt developmental period. Detailed knowledge of the regulatory network involved in E. sinensis molting can be used as a basis for breeding improved E. sinensis species, recovery of the wild E. sinensis population and prosperous development of the E. sinensis artificial breeding industry.

20.
Antioxidants (Basel) ; 11(6)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35740076

RESUMEN

Dietary oxidized lipids are key perpetrator to accumulate excessive reactive oxygen species (ROS) that induce oxidative stress for animals. Immoderate oxidative stress dysregulates cell fate, perturbs cellular homeostasis, thereby interrupts metabolism and normal growth. Therefore, a 12-week feeding trial with fish oil (FO, control group), oxidized fish oil (OF), and emodin-supplemented (OF+E) diets was conducted to evaluate the therapeutic mechanism of emodin on metabolic and oxidative resistance in Megalobrama amblycephala liver. Morphologically, emodin remits oxidized fish oil-induced cellular constituents damage, evidenced by lipid droplets enlargement and accumulation, mitochondria rupture, and nucleus aggregation, which were functionally related to oxidative stress, metabolism, and cell fate determination. Consecutively, glucose, lipid, and amino acid metabolism were retained under emodin stimulation. Specifically, fatty acid metabolic genes optimized fatty acid utilization and metabolism, featured as total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) alternation. Physiologically, inflammation, autophagy, apoptosis, as well as antioxidant capacity were alleviated by emodin. Interactively, fatty acid metabolism was correlated with antioxidant capacity; while the crosstalk and dynamic equilibrium between apoptosis and autophagy determine the cell fate under oxidative stress amelioration. Synergistically, Nrf2 and Notch signaling were active to antioxidant defense. In particular, oxidative stress blocked the crosstalk between Notch and Nrf2 signaling, while emodin rescued Notch-Nrf2 interaction to ameliorate oxidative stress. In conclusion, these results suggest that elevated ROS levels by oxidative stress activates Notch and Nrf2 signaling but intercepts Notch-Nrf2 crosstalk to stimulate cell fate and antioxidant program; dietary emodin alleviates oxidative stress and returns overall ROS levels to a moderate state to maintain homeostatic balance. The crosstalk between Notch and Nrf2 signaling might be the potential therapeutic target for emodin to ameliorate oxidative stress and metabolic disorder in M. amblycephala liver.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA