Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Acta Pharmacol Sin ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719954

RESUMEN

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

2.
Nat Commun ; 15(1): 2935, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580633

RESUMEN

Histopathology plays a critical role in the diagnosis and surgical management of cancer. However, access to histopathology services, especially frozen section pathology during surgery, is limited in resource-constrained settings because preparing slides from resected tissue is time-consuming, labor-intensive, and requires expensive infrastructure. Here, we report a deep-learning-enabled microscope, named DeepDOF-SE, to rapidly scan intact tissue at cellular resolution without the need for physical sectioning. Three key features jointly make DeepDOF-SE practical. First, tissue specimens are stained directly with inexpensive vital fluorescent dyes and optically sectioned with ultra-violet excitation that localizes fluorescent emission to a thin surface layer. Second, a deep-learning algorithm extends the depth-of-field, allowing rapid acquisition of in-focus images from large areas of tissue even when the tissue surface is highly irregular. Finally, a semi-supervised generative adversarial network virtually stains DeepDOF-SE fluorescence images with hematoxylin-and-eosin appearance, facilitating image interpretation by pathologists without significant additional training. We developed the DeepDOF-SE platform using a data-driven approach and validated its performance by imaging surgical resections of suspected oral tumors. Our results show that DeepDOF-SE provides histological information of diagnostic importance, offering a rapid and affordable slide-free histology platform for intraoperative tumor margin assessment and in low-resource settings.


Asunto(s)
Aprendizaje Profundo , Microscopía , Colorantes Fluorescentes , Hematoxilina , Eosina Amarillenta-(YS)
3.
J Hepatol ; 80(6): 834-845, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331323

RESUMEN

BACKGROUND & AIMS: Accumulating evidence has indicated the presence of mature microRNAs (miR) in the nucleus, but their effects on steatohepatitis remain elusive. We have previously demonstrated that the intranuclear miR-204-3p in macrophages protects against atherosclerosis, which shares multiple risk factors with metabolic dysfunction-associated steatotic liver disease (MASLD). Herein, we aimed to explore the functional significance of miR-204-3p in steatohepatitis. METHODS: miR-204-3p levels and subcellular localization were assessed in the livers and peripheral blood mononuclear cells of patients with MASLD. Wild-type mice fed high-fat or methionine- and choline-deficient diets were injected with an adeno-associated virus system containing miR-204-3p to determine the effect of miR-204-3p on steatohepatitis. Co-culture systems were applied to investigate the crosstalk between macrophages and hepatocytes or hepatic stellate cells (HSCs). Multiple high-throughput epigenomic sequencings were performed to explore miR-204-3p targets. RESULTS: miR-204-3p expression decreased in livers and macrophages in mice and patients with fatty liver. In patients with MASLD, miR-204-3p levels in peripheral blood mononuclear cells were inversely related to the severity of hepatic inflammation and damage. Macrophage-specific miR-204-3p overexpression reduced steatohepatitis in high-fat or methionine- and choline-deficient diet-fed mice. miR-204-3p-overexpressing macrophages inhibited TLR4/JNK signaling and pro-inflammatory cytokine release, thereby limiting fat deposition and inflammation in hepatocytes and fibrogenic activation in HSCs. Epigenomic profiling identified miR-204-3p as a specific regulator of ULK1 expression. ULK1 transcription and VPS34 complex activation by intranuclear miR-204-3p improved autophagic flux, promoting the anti-inflammatory effects of miR-204-3p in macrophages. CONCLUSIONS: miR-204-3p inhibits macrophage inflammation, coordinating macrophage actions on hepatocytes and HSCs to ameliorate steatohepatitis. Macrophage miR-204-3p may be a therapeutic target for MASLD. IMPACT AND IMPLICATIONS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic inflammatory disease ranging from simple steatosis to steatohepatitis. However, the molecular mechanisms underlying the progression of MASLD remain incompletely understood. Here, we demonstrate that miR-204-3p levels in circulating peripheral blood mononuclear cells are negatively correlated with disease severity in patients with MASLD. Nuclear miR-204-3p activates ULK1 transcription and improves autophagic flux, limiting macrophage activation and hepatic steatosis. Our study provides a novel understanding of the mechanism of macrophage autophagy and inflammation in steatohepatitis and suggests that miR-204-3p may act as a potential therapeutic target for MASLD.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Humanos , Masculino , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/etiología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Hígado/metabolismo , Hígado/patología , Dieta Alta en Grasa/efectos adversos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Modelos Animales de Enfermedad , Homólogo de la Proteína 1 Relacionada con la Autofagia
4.
Acta Biomater ; 176: 128-143, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38278340

RESUMEN

Chronic diabetic wounds are a severe complication of diabetes, often leading to high treatment costs and high amputation rates. Numerous studies have revealed that nitric oxide (NO) therapy is a promising option because it favours wound revascularization. Here, base-paired injectable adhesive hydrogels (CAT) were prepared using adenine- and thymine-modified chitosan (CSA and CST). By further introducing S-nitrosoglutathione (GSNO) and binary l-arginine (bArg), we obtained a NO sustained-release hydrogel (CAT/bArg/GSON) that was more suitable for the treatment of chronic wounds. The results showed that the expression of HIF-1α and VEGF was upregulated in the CAT/bArg/GSON group, and improved blood vessel regeneration was observed, indicating an important role of NO. In addition, the research findings revealed that following treatment with the CAT/bArg/GSON hydrogel, the viability of Staphylococcus aureus and Escherichia coli decreased to 14 ± 2 % and 6 ± 1 %, respectively. Moreover, the wound microenvironment was improved, as evidenced by a 60 ± 1 % clearance of DPPH. In particular, histological examination and immunohistochemical staining results showed that wounds treated with CAT/bArg/GSNO exhibited denser neovascularization, faster epithelial tissue regeneration, and thicker collagen deposition. Overall, this study proposes an effective strategy to prepare injectable hydrogel dressings with dual NO donors. The functionality of CAT/bArg/GSON has been thoroughly demonstrated in research on chronic wound vascular regeneration, indicating that CAT/bArg/GSON could be a potential option for promoting chronic wound healing. STATEMENT OF SIGNIFICANCE: This article prepares a chitosan hydrogel utilizing the principle of complementary base pairing, which offers several advantages, including good adhesion, biocompatibility, and flow properties, making it a good material for wound dressings. Loaded GSNO and bArg can steadily release NO and l-arginine through the degradation of the gel. Then, the released l-arginine not only possesses antioxidant properties but can also continue to generate a small amount of NO under the action of NOS. This design achieves a sustained and stable supply of NO at the wound site, maximizing the angiogenesis-promoting and antibacterial effects of NO. More neovascularization and abundant collagen were observed in the regenerated tissues. This study provides an effective repair hydrogel material for diabetic wound.


Asunto(s)
Quitosano , Diabetes Mellitus , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Donantes de Óxido Nítrico/farmacología , Adhesivos/farmacología , Quitosano/farmacología , Quitosano/química , Angiogénesis , Cicatrización de Heridas , Colágeno/farmacología , Antibacterianos/farmacología , Arginina/farmacología
5.
Biomed Opt Express ; 14(10): 5097-5112, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37854554

RESUMEN

Characterization of microvascular changes during neoplastic progression has the potential to assist in discriminating precancer and early cancer from benign lesions. Here, we introduce a novel high-resolution microendoscope that leverages scanning darkfield reflectance imaging to characterize angiogenesis without exogenous contrast agents. Scanning darkfield imaging is achieved by coupling programmable illumination with a complementary metal-oxide semiconductor (CMOS) camera rolling shutter, eliminating the need for complex optomechanical components and making the system portable, low-cost (<$5,500) and simple to use. Imaging depth is extended by placing a gradient-index (GRIN) lens at the distal end of the imaging fiber to resolve subepithelial microvasculature. We validated the capability of the scanning darkfield microendoscope to visualize microvasculature at different anatomic sites in vivo by imaging the oral cavity of healthy volunteers. Images of cervical specimens resected for suspected neoplasia reveal distinct microvascular patterns in columnar and squamous epithelium with different grades of precancer, indicating the potential of scanning darkfield microendoscopy to aid in efforts to prevent cervical cancer through early diagnosis.

6.
Chem Sci ; 14(37): 10297-10307, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37772093

RESUMEN

HMGB1 (high-mobility group box 1) is a non-histone chromatin-associated protein that has been widely reported as a representative damage-associated molecular pattern (DAMP) and to play a pivotal role in the proinflammatory process once it is in an extracellular location. Accumulating evidence has shown that HMGB1 undergoes extensive post-translational modifications (PTMs) that actively regulate its conformation, localization, and intermolecular interactions. However, fully characterizing the functional implications of these PTMs has been challenging due to the difficulty in accessing homogeneous HMGB1 with site-specific PTMs of interest. In this study, we developed a streamlined protein semi-synthesis strategy via salicylaldehyde ester-mediated chemical ligations (Ser/Thr ligation and Cys/Pen ligation, STL/CPL). This methodology enabled us to generate a series of N-terminal region acetylated HMGB1 proteins. Further studies revealed that acetylation regulates HMGB1-heparin interaction and modulates HMGB1's stability against thrombin, representing a regulatory switch to control HMGB1's extracellular activity.

7.
Front Oncol ; 13: 1146905, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397392

RESUMEN

Introduction: Recent clinical trials have confirmed that anti-programmed cell death-1/ligand 1 (anti-PD-1/L1) combined with either anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) or anti-T-cell immunoreceptor with Ig and ITIM domains (TIGIT) antibodies (dual immunotherapy) produced significant benefits as first-line therapies for patients with advanced non-small cell lung cancer (NSCLC). However, it also increased the incidence of adverse reactions, which cannot be ignored. Our study aims to explore the efficacy and safety of dual immunotherapies in advanced NSCLC. Methods: This meta-analysis ultimately included nine first-line randomized controlled trials collected from PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases until 13 August 2022. Efficacy was measured as the hazard ratio (HR) and 95% confidence interval (CI) for progression-free survival (PFS), overall survival (OS), and risk ratio (RR) for the objective response rates (ORRs). Treatment safety was assessed by RR of any grade of treatment-related adverse events (TRAEs) and grade ≥ 3 TRAEs. Results: Our results demonstrated that, compared to chemotherapy, dual immunotherapy shows durable benefits in OS (HR = 0.76, 95% CI: 0.69-0.82) and PFS (HR = 0.75, 95% CI: 0.67-0.83) across all levels of PD-L1 expression. Subgroup analysis also presented that dual immunotherapy resulted in improved long-term survival compared with chemotherapy in patients with a high tumor mutational burden (TMB) (OS: HR = 0.76, p = 0.0009; PFS: HR = 0.72, p < 0.0001) and squamous cell histology (OS: HR = 0.64, p < 0.00001; PFS: HR = 0.66, p < 0.001). However, compared with immune checkpoint inhibitor (ICI) monotherapy, dual immunotherapy shows some advantages in terms of OS and ORR and only improved PFS (HR = 0.77, p = 0.005) in PD-L1 < 25%. With regard to safety, there was no significant difference in any grade TRAEs (p = 0.05) and grade ≥ 3 TRAEs (p = 0.31) between the dual immunotherapy and chemotherapy groups. However, compared with ICI monotherapy, dual immunotherapy significantly increased the incidence of any grade TRAEs (p = 0.03) and grade ≥ 3 TRAEs (p < 0.0001). Conclusions: As for the efficacy and safety outcome, compared with standard chemotherapy, dual immunotherapy remains an effective first-line therapy for patients with advanced NSCLC, especially for patients with high TMB levels and squamous cell histology. Furthermore, compared to single-agent immunotherapy, dual immunotherapy is only considered for use in patients with low PD-L1 expression in order to reduce the emergence of resistance to immunotherapy.Systematic Review Registation: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022336614.

8.
J Med Chem ; 66(11): 7179-7204, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37226718

RESUMEN

PD-1/PD-L1 checkpoint blockade has demonstrated great success in cancer immunotherapy. Small-molecule PD-L1 inhibitors also attract significant research interests but remain challenging in the efficacy and safety. Carbohydrate moiety and carbohydrate-binding proteins (lectins) play important roles in immune modulation including antigen recognition and presenting. Herein, we reported a novel strategy to strengthen the immunotherapeutic effect of small-molecule PD-L1 inhibitors by introducing sugar motifs, which may utilize the carbohydrate-mediated immune enhancement for cancer treatment. The data revealed that glycoside compounds containing mannose or N-acetylglucosamine exhibited the best results in IFN-γ secretion. Moreover, compared to the nonglycosylated compounds, glycosides C3 and C15 demonstrated significant lower cytotoxicity and effective in vivo antitumor potency in the CT26 and melanoma B16-F10 tumor models with good tolerance. Notably, tumor-infiltrating lymphocyte (TIL) analysis validated increased CD3+, CD4+, CD8+, and granzyme B+ T cells after glycoside treatments. This work presents a new concept to improve the immunotherapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Linfocitos T , Linfocitos T/metabolismo , Carbohidratos/farmacología , Inmunoterapia/métodos , Glicósidos , Antígeno B7-H1/metabolismo
9.
J Biomed Opt ; 28(1): 016002, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36654656

RESUMEN

Significance: Despite recent advances in multimodal optical imaging, oral imaging systems often do not provide real-time actionable guidance to the clinician who is making biopsy and treatment decisions. Aim: We demonstrate a low-cost, portable active biopsy guidance system (ABGS) that uses multimodal optical imaging with deep learning to directly project cancer risk and biopsy guidance maps onto oral mucosa in real time. Approach: Cancer risk maps are generated based on widefield autofluorescence images and projected onto the at-risk tissue using a digital light projector. Microendoscopy images are obtained from at-risk areas, and multimodal image data are used to calculate a biopsy guidance map, which is projected onto tissue. Results: Representative patient examples highlight clinically actionable visualizations provided in real time during an imaging procedure. Results show multimodal imaging with cancer risk and biopsy guidance map projection offers a versatile, quantitative, and precise tool to guide biopsy site selection and improve early detection of oral cancers. Conclusions: The ABGS provides direct visible guidance to identify early lesions and locate appropriate sites to biopsy within those lesions. This represents an opportunity to translate multimodal imaging into real-time clinically actionable visualizations to help improve patient outcomes.


Asunto(s)
Neoplasias de la Boca , Imagen Óptica , Humanos , Imagen Óptica/métodos , Detección Precoz del Cáncer/métodos , Neoplasias de la Boca/diagnóstico , Biopsia , Mucosa Bucal/patología
10.
Reprod Sci ; 30(6): 2003-2015, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36576713

RESUMEN

Necroptosis is a promising novel target for cervical cancer therapy. Nevertheless, differentially expressed necroptosis-related genes (NRGs) in cervical cancer and their associations with prognosis are far from fully clarified. In this study, differentially expressed NRGs (DE-NRGs) were screened out and their bio-function was elucidated. Subsequently, a prognostic scoring model based on the regression coefficients of the screened out NRGs and their corresponding mRNA expressions were constructed and validated. Finally, the survival probability of cervical cancer patients based on the constructed prognostic scoring model in 3 and 5 years was predicted and assessed. We found 17 DE-NRGs in cervical cancer tissues which were closely related to cancer progression, and most of them were significantly highly expressed. Furthermore, 3 NRG were confirmed as the prognostic signature genes from 17 DE-NRGs by regression analysis. Overall survival predicted through our prognostic scoring model was lower in the high-risk group than in the low-risk group (p < 0.05) in both the TCGA cohort and the external GEO44001 validation cohort. What's more, the prediction performance of our prognostic scoring models well verified by the ROC curve, and the risk score calculated could act as an independent prognostic factor for cervical cancer patients. The calibration curve and C-index (0.776) of the nomogram analysis suggested that the predictive performance of the nomogram was satisfactory. Our study identified and validated a necroptosis-related prognostic signature in cervical cancer, which could well predict the prognosis for cervical cancer patients.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/genética , Pronóstico , Necroptosis/genética , Nomogramas , Curva ROC
12.
Artículo en Inglés | MEDLINE | ID: mdl-38406798

RESUMEN

Cancer continues to affect underserved populations disproportionately. Novel optical imaging technologies, which can provide rapid, non-invasive, and accurate cancer detection at the point of care, have great potential to improve global cancer care. This article reviews the recent technical innovations and clinical translation of low-cost optical imaging technologies, highlighting the advances in both hardware and software, especially the integration of artificial intelligence, to improve in vivo cancer detection in low-resource settings. Additionally, this article provides an overview of existing challenges and future perspectives of adapting optical imaging technologies into clinical practice, which can potentially contribute to novel insights and programs that effectively improve cancer detection in low-resource settings.

13.
Sci Adv ; 8(50): eadd1412, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36516255

RESUMEN

Cross-talk between Rho- and Arf-family guanosine triphosphatases (GTPases) plays an important role in linking the actin cytoskeleton to membrane protrusions, organelle morphology, and vesicle trafficking. The central actin regulator, WAVE regulatory complex (WRC), integrates Rac1 (a Rho-family GTPase) and Arf signaling to promote Arp2/3-mediated actin polymerization in many processes, but how WRC senses Arf signaling is unknown. Here, we have reconstituted a direct interaction between Arf and WRC. This interaction is greatly enhanced by Rac1 binding to the D site of WRC. Arf1 binds to a previously unidentified, conserved surface on the Sra1 subunit of WRC, which, in turn, drives WRC activation using a mechanism distinct from that of Rac1. Mutating the Arf binding site abolishes Arf1-WRC interaction, disrupts Arf1-mediated WRC activation, and impairs lamellipodia formation and cell migration. This work uncovers a new mechanism underlying WRC activation and provides a mechanistic foundation for studying how WRC-mediated actin polymerization links Arf and Rac signaling in cells.

14.
Small Methods ; 6(11): e2201164, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36156489

RESUMEN

Ortho-phthalaldehyde has recently found wide potentials for protein bioconjugation and peptide cyclization. Herein, the second-generation dialdehyde-based peptide cyclization method is reported. The thiophene-2,3-dialdehyde (TDA) reacts specifically with the primary amine (from Lys side chain or peptide N-terminus) and thiol (from Cys side chain) within unprotected peptides to generate a highly stable thieno[2,3-c]pyrrole-bridged cyclic structure, while it does not react with primary amine alone. This reaction is carried out in the aqueous buffer and features tolerance of diverse functionalities, rapid and clean transformation, and operational simplicity. The features allow TDA to be used for protein stapling and phage displayed peptide cyclization.


Asunto(s)
Bacteriófagos , Tiofenos , Ciclización , Secuencia de Aminoácidos , Péptidos/química , Proteínas , Aminas
15.
Res Social Adm Pharm ; 18(9): 3560-3567, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35379561

RESUMEN

BACKGROUND: Over-the-counter (OTC) medication package inserts are vital references for healthcare professionals to make drug recommendations and influential education materials that patients commonly refer to when self-caring. However, little is known about the quality and readability of the OTC medication package inserts in China. OBJECTIVES: This study aimed at evaluating the quality and readability of OTC medication package inserts. METHODS: Package inserts of OTC medication were selected based on the market share and pharmacological category. The quality of the package inserts was evaluated based on standards adapted separately from the Chinese National Medical Products Administration (NMPA) and European Medicines Agency's (EMA) Working Group. The readability was assessed using the Patient Education Materials Assessment Tool (PEMAT) in conjunction with the Chinese Readability Index Explorer (CRIE). RESULTS: A total of 29 OTC medication package inserts consisting of 12 Western Medicine (WM) and 17 Chinese Tradition Patent Medicine (CTPM) package inserts were included. Overall, the OTC package inserts met 92% of the NMPA standards and 54% of the EMA standards. In terms of readability assessment using PEMAT, the overall median (interquartile range) understandability score was 38% (38-45%) and for actionability score was 40% (40-55%). The overall text reading level of package inserts measured by the CRIE, after removing some medical jargon, is equivalent to the median reading level for the 12th (9.5-12th) grade reading level. CONCLUSIONS: The quality of OTC medication package inserts was satisfactory under internal standards but poor under international standards. Some OTC pharmacological information is not provided due to lack of research, especially for CTPM. A more informative and comprehensive package insert may be needed to guide drug use decisions. OTC medication package inserts are not appropriate patient education materials in terms of readability. Additional materials may be developed to supplement package inserts for patient education for OTC medications.


Asunto(s)
Comprensión , Alfabetización en Salud , China , Humanos , Medicamentos sin Prescripción , Etiquetado de Productos , Materiales de Enseñanza
16.
Oxid Med Cell Longev ; 2022: 8332825, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35340217

RESUMEN

Mounting evidence demonstrates uncontrolled endoplasmic reticulum (ER) stress responses can activate the inflammasome, which generally results in endothelial dysfunction, a major pathogenetic factor of chronic inflammatory diseases such as atherosclerosis. Salvianolic acid B (SalB), produced by Radix Salviae, exerts antioxidative and anti-inflammatory activities in multiple cell types. However, SalB's effects on ER stress-related inflammasome and endothelial dysfunction remain unknown. Here, we showed SalB substantially abrogated ER stress-induced cell death and reduction in capillary tube formation, with declined intracellular reactive oxygen species (ROS) amounts and restored mitochondrial membrane potential (MMP), as well as increased expression of HO-1 and SOD2 in bone marrow-derived endothelial progenitor cells (BM-EPCs). ER stress suppression by CHOP or caspase-4 siRNA transfection attenuated the protective effect of SalB. Additionally, SalB alleviated ER stress-mediated pyroptotic cell death via the suppression of TXNIP/NLRP3 inflammasome, as evidenced by reduced cleavage of caspase-1 and interleukin- (IL-) 1ß and IL-18 secretion levels. Furthermore, this study provided a mechanistic basis that AMPK/FoxO4/KLF2 and Syndecan-4/Rac1/ATF2 signaling pathway modulation by SalB substantially prevented BM-EPCs damage associated with ER stress by decreasing intracellular ROS amounts and inducing NLRP3-dependent pyroptosis. In summary, our findings identify that ER stress triggered mitochondrial ROS release and NLRP3 generation in BM-EPCs, while SalB inhibits NLRP3 inflammasome-mediated pyroptotic cell death by regulating the AMPK/FoxO4/KLF2 and Syndecan-4/Rac1/ATF2 pathways. The current findings reveal SalB as a potential new candidate for the treatment of atherosclerotic heart disease.


Asunto(s)
Células Progenitoras Endoteliales , Inflamasomas , Proteínas Quinasas Activadas por AMP/metabolismo , Benzofuranos , Proteínas de Ciclo Celular/metabolismo , Células Progenitoras Endoteliales/metabolismo , Factores de Transcripción Forkhead/metabolismo , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Transducción de Señal , Sindecano-4/metabolismo , Proteína de Unión al GTP rac1/metabolismo
17.
Phys Chem Chem Phys ; 24(8): 5220-5232, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35167632

RESUMEN

A classical atomistic simulation study is reported for the microscopic structure and dynamics of a water/methanol mixture confined in flexible nanoporous zeolitic imidazolate framework ZIF-8. Both the radial density distribution and vivid two-dimensional density profile demonstrate that methanol molecules can roughly be viewed as "embedded" between two layers of water molecules to form a "sandwich" structure. The reason for the formation of such a specific structure is explained based on the hydrogen-bonding state and the strength of various hydrogen bonds. The investigation of guest molecular diffusion shows that the self-diffusion coefficient of confined water is generally one to two orders of magnitude smaller than that of bulk water. In addition, the dependence of the self-diffusion coefficient on loading is non-monotonic: the self-diffusion coefficient firstly shows a significant increase and then decreases at higher loading. Moreover, both the structure and dynamics of the hydrogen bond (HB) network of confined water molecules are investigated in a spatially resolved manner. The results indicate that both the HB structure and dynamics of water molecules near the ZIF-8 surface deviate significantly from those of bulk water. However, while water molecules located at the pore center are relatively similar to bulk water molecules with respect to the HB structure, they exhibit strong slowdown in HB dynamics when compared with bulk water. This simulation study elucidates in detail the structural and dynamical properties of a water/methanol mixture in nanoscopic ZIF-8 confinement, which is expected to provide a deep insight into the role of porous fillers, such as ZIF-8, in improving the performance of the dehydration of alcohols via pervaporation and other related processes.

18.
Phytomedicine ; 86: 153563, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33951569

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated mortality worldwide. Sorafenib (SORA), as a first-line therapeutic drug, has been used to treat HCC, but resistance poses a major limitation on the efficacy of SORA chemotherapy. Pristimerin (PRIS), a natural bioactive component isolated from various plant species in the Celastraceae and Hippocrateaceae families, has been reported to exhibit outstanding antitumor effects in several types of cells in vitro. PURPOSE: The aim of this study was to investigate whether PRIS can exert synergistic anti-tumor effects with the combination of SORA, and if so, through what mechanism. METHODS: Conditionally reprogrammed patient derived-primary hepatocellular carcinoma cells (CRHCs) were isolated from human liver cancer tissues and treated with SORA and PRIS. Cell proliferation, apoptosis, migration and tube formation ability were detected by DNA content quantification, flow cytometry, transwell assay and Matrigel-based angiogenesis assay. Gene and protein expression were assessed by qRT-PCR and Western blot respectively. RESULTS: Initially, we observed that the combination of the two drugs had a much stronger inhibitory effect on CRHCs growth than either drug alone. Moreover, the combination of 2 µM SORA and 1 µM PRIS exhibited a significant anti­migrative and anti-invaded effect on CRHCs, and remarkably inhibited capillary structure formation of Human Umbilical Vein Endothelial Cells (HUVECs). Furthermore, the combined treatment with SORA and PRIS synergistically induced intrinsic apoptosis in CRHCs, involving a caspase-4-dependent mechanism paralleled by an increased Bax/Bcl-xL ratio. These activities were mediated through ROS generation and the induction of endoplasmic reticulum (ER) stress and mitochondrial dysfunction. GRP78 silencing or ER stress inhibitor 4-phenylbutyric acid administration was revealed to abolish the anticancer effects of PRIS, indicating the critical role of GRP78 in mediating the bioactivity of PRIS. The present study also provides mechanistic evidence that PRIS modulated the Akt/FoxO1/p27kip1 signaling pathway, which is required for mitochondrial-mediated intrinsic apoptosis, activation of ER stress, and stimulation of caspase-4 induced by PRIS, and, consequently resulting in suppressed cell viability, migration and angiogenesis co-treated with SORA in CRHCs. CONCLUSION: Our results suggest the use of PRIS as sensitizers of chemotherapy paving the way for innovative and promising targeted chemotherapy-based therapeutic strategies in human HCC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Adulto , Anciano , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Supervivencia Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteína Forkhead Box O1/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Persona de Mediana Edad , Triterpenos Pentacíclicos/administración & dosificación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sorafenib/administración & dosificación , Células Tumorales Cultivadas
19.
J Vis Exp ; (168)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33616108

RESUMEN

Traditional methods to detect and quantify nucleic acids rely on polymerase chain reaction (PCR) and require the use of expensive thermocyclers with integrated fluorescence detection of amplicons. Isothermal nucleic acid amplification technologies eliminate the need for thermal cycling; however, fluorescence-based detection of products is still required for real-time, quantitative results. Several portable isothermal heaters with integrated fluorescence detection are now commercially available; however, the cost of these devices remains a significant barrier to widespread adoption in resource-limited settings. Described here is a protocol for the design and assembly of a modular, low-cost fluorimeter constructed from off-the-shelf components. Enclosed in a compact 3D printed housing, the fluorimeter is designed to be placed atop a commercially available heat block holding a PCR tube. The fluorimeter described here was optimized to detect fluorescein isothiocyanate (FITC) dye, but the system can be modified for use with dyes commonly used as reporters in real-time nucleic acid amplification reactions. Clinical applicability of the system is demonstrated by performing real-time nucleic acid detection with two isothermal amplification technologies: recombinase polymerase amplification (RPA) for detection of positive control DNA provided in a commercial kit and reverse transcription loop-mediated isothermal amplification (RT-LAMP) for detection of clinically meaningful levels of SARS-CoV-2 RNA.


Asunto(s)
Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Ácidos Nucleicos/genética , Impresión Tridimensional , Transcripción Reversa/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , COVID-19/genética , Recursos en Salud , Humanos , ARN Viral/genética , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
20.
Mol Oncol ; 15(10): 2580-2599, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32915503

RESUMEN

Optical endoscopy is the primary diagnostic and therapeutic tool for management of gastrointestinal (GI) malignancies. Most GI neoplasms arise from precancerous lesions; thus, technical innovations to improve detection and diagnosis of precancerous lesions and early cancers play a pivotal role in improving outcomes. Over the last few decades, the field of GI endoscopy has witnessed enormous and focused efforts to develop and translate accurate, user-friendly, and minimally invasive optical imaging modalities. From a technical point of view, a wide range of novel optical techniques is now available to probe different aspects of light-tissue interaction at macroscopic and microscopic scales, complementing white light endoscopy. Most of these new modalities have been successfully validated and translated to routine clinical practice. Herein, we provide a technical review of the current status of existing and promising new optical endoscopic imaging technologies for GI cancer screening and surveillance. We summarize the underlying principles of light-tissue interaction, the imaging performance at different scales, and highlight what is known about clinical applicability and effectiveness. Furthermore, we discuss recent discovery and translation of novel molecular probes that have shown promise to augment endoscopists' ability to diagnose GI lesions with high specificity. We also review and discuss the role and potential clinical integration of artificial intelligence-based algorithms to provide decision support in real time. Finally, we provide perspectives on future technology development and its potential to transform endoscopic GI cancer detection and diagnosis.


Asunto(s)
Neoplasias Gastrointestinales , Lesiones Precancerosas , Inteligencia Artificial , Endoscopía Gastrointestinal/métodos , Neoplasias Gastrointestinales/diagnóstico por imagen , Neoplasias Gastrointestinales/patología , Humanos , Imagen Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA