Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Phys Rev Lett ; 132(12): 126402, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38579203

RESUMEN

The GW approximation is widely used for reliable and accurate modeling of single-particle excitations. It also serves as a starting point for many theoretical methods, such as its use in the Bethe-Salpeter equation (BSE) and dynamical mean-field theory. However, full-frequency GW calculations for large systems with hundreds of atoms remain computationally challenging, even after years of efforts to reduce the prefactor and improve scaling. We propose a method that reformulates the correlation part of the GW self-energy as a resolvent of a Hermitian matrix, which can be efficiently and accurately computed using the standard Lanczos method. This method enables full-frequency GW calculations of material systems with a few hundred atoms on a single computing workstation. We further demonstrate the efficiency of the method by calculating the defect-state energies of silicon quantum dots with diameters up to 4 nm and nearly 2,000 silicon atoms using only 20 computational nodes.

2.
Nanoscale ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597125

RESUMEN

An optimized metastructure (MS) switchable between ultra-wideband (UWB) angle-insensitive absorption, and transmissive linear-to-circular (LTC) polarization conversion (PC), is proposed, which is a theoretical study. The structural parameters of this MS are optimized by the thermal exchange optimization algorithm. By modulating the chemical potential (µc) of the graphene-based hyperbolic metamaterial embedded in the MS, the MS can achieve UWB absorption in the absorption state and LTC PC in the transmission state. At normal incidence, in the absorption state, the MS exhibits absorptivity exceeding 0.9 within 7-15.45 THz, with a relative bandwidth (RBW) of 75.28%. By elevating µc, an UWB LTC PC is realized, with a RBW of 118.8%, achieving transmittance above 0.9 and the axial ratio below 3 dB. When prioritizing the angular stability, in the absorption state, the MS secures the angular stability of 75° for TE waves and 65° for TM ones. In the transmission state, the angular stability of PC reaches 60°, with RBW = 100.7%. Moreover, by manipulating µc, the tunability of UWB absorption is realized. The optimized MS provides a reference for designing multifunctional intelligent terahertz modulators, with promising application potential in domains like electromagnetic shielding, communication systems, and THz modulation.

3.
iScience ; 27(4): 109461, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38550997

RESUMEN

Artificial intelligence (AI) has been found to assist in optical differentiation of hyperplastic and adenomatous colorectal polyps. We investigated whether AI can improve the accuracy of endoscopists' optical diagnosis of polyps with advanced features. We introduced our AI system distinguishing polyps with advanced features with more than 0.870 of accuracy in the internal and external validation datasets. All 19 endoscopists with different levels showed significantly lower diagnostic accuracy (0.410-0.580) than the AI. Prospective randomized controlled study involving 120 endoscopists into optical diagnosis of polyps with advanced features with or without AI demonstration identified that AI improved endoscopists' proportion of polyps with advanced features correctly sent for histological examination (0.960 versus 0.840, p < 0.001), and the proportion of polyps without advanced features resected and discarded (0.490 versus 0.380, p = 0.007). We thus developed an AI technique that significantly increases the accuracy of colorectal polyps with advanced features.

4.
Phys Rev E ; 109(2-1): 024405, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491669

RESUMEN

To maximize the survival chances of society members, collective self-organization must balance individual interests with promoting the collective welfare. Although situations where group members have equal optimal values are clear, how varying optimal values impacts group dynamics remains unclear. To address this gap, we conducted a self-optimization study of a binary system incorporating communication-enabled active particles with distinct optimal values. We demonstrate that similar particles will spontaneously aggregate and separate from each other to maximize their individual benefits during the process of self-optimization. Our research shows that both types of particles can produce the optimal field values at low density. However, only one type of particle can achieve the optimal field values at medium density. At high densities, neither type of particle is effective in reaching the optimal field values. Interestingly, we observed that during the self-optimization process, the mixture demixed spontaneously under certain circumstances of mixed particles. Particles with higher optimal values developed into larger clusters, while particles with lower optimal values migrated outside of these clusters, resulting in the separation of the mixture. To achieve this separation, suitable noise intensity, particle density, and the significant difference in optimal values were necessary. Our results provide a more profound comprehension of the self-optimization of synthetic or biological agents' communication and provide valuable insight into separating binary species and mixtures.

5.
J Cell Mol Med ; 28(7): e18157, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494857

RESUMEN

Periprosthetic osteolysis (PPO) caused by wear particles is one of the leading causes of implant failure after arthroplasty. Macrophage polarization imbalance and subsequent osteogenic inhibition play a crucial role in PPO. Calycosin (CA) is a compound with anti-inflammatory and osteoprotective properties. This study aimed to evaluate the effects of CA on titanium (Ti) particle-induced osteolysis, Ti particle-induced macrophage polarization and subsequent osteogenic deficits, and explore the associated signalling pathways in a Ti particle-stimulated calvarial osteolysis mouse model using micro-CT, ELISA, qRT-PCR, immunofluorescence and western blot techniques. The results showed that CA alleviated inflammation, osteogenic inhibition and osteolysis in the Ti particle-induced calvarial osteolysis mouse model in vivo. In vitro experiments showed that CA suppressed Ti-induced M1 macrophage polarization, promoted M2 macrophage polarization and ultimately enhanced osteogenic differentiation of MC3T3-E1 cells. In addition, CA alleviated osteogenic deficits by regulating macrophage polarization homeostasis via the NF-κB signalling pathway both in vivo and in vitro. All these findings suggest that CA may prove to be an effective therapeutic agent for wear particle-induced osteolysis.


Asunto(s)
Isoflavonas , Osteogénesis , Osteólisis , Ratones , Animales , Osteólisis/inducido químicamente , Osteólisis/tratamiento farmacológico , Osteólisis/metabolismo , Titanio/toxicidad , Macrófagos/metabolismo
6.
Adv Sci (Weinh) ; 11(16): e2308152, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403472

RESUMEN

Underwater superhydrophobic surfaces stand as a promising frontier in materials science, holding immense potential for applications in underwater infrastructure, vehicles, pipelines, robots, and sensors. Despite this potential, widespread commercial adoption of these surfaces faces limitations, primarily rooted in challenges related to material durability and the stability of the air plastron during prolonged submersion. Factors such as pressure, flow, and temperature further complicate the operational viability of underwater superhydrophobic technology. This comprehensive review navigates the evolving landscape of underwater superhydrophobic technology, providing a deep dive into the introduction, advancements, and innovations in design, fabrication, and testing techniques. Recent breakthroughs in nanotechnology, magnetic-responsive coatings, additive manufacturing, and machine learning are highlighted, showcasing the diverse avenues of progress. Notable research endeavors concentrate on enhancing the longevity of plastrons, the fundamental element governing superhydrophobic behavior. The review explores the multifaceted applications of superhydrophobic coatings in the underwater environment, encompassing areas such as drag reduction, anti-biofouling, and corrosion resistance. A critical examination of commercial offerings in the superhydrophobic coating landscape offers a current perspective on available solutions. In conclusion, the review provides valuable insights and forward-looking recommendations to propel the field of underwater superhydrophobicity toward new dimensions of innovation and practical utility.

7.
ACS Nano ; 18(3): 2446-2454, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38207242

RESUMEN

Two-dimensional (2D) nanomaterials have numerous interesting chemical and physical properties that make them desirable building blocks for the manufacture of macroscopic materials. Liquid-phase processing is a common method for forming macroscopic materials from these building blocks including wet-spinning and vacuum filtration. As such, assembling 2D nanomaterials into ordered functional materials requires an understanding of their solution dynamics. Yet, there are few experimental studies investigating the hydrodynamics of disk-like materials. Herein, we report the lateral diffusion of hexagonal boron nitride nanosheets (h-BN and graphene) in aqueous solution when confined in 2-dimensions. This was done by imaging fluorescent surfactant-tagged nanosheets and visualizing them by using fluorescence microscopy. Spectroscopic studies were conducted to characterize the interactions between h-BN and the fluorescent surfactant, and atomic force microscopy (AFM) was conducted to characterize the quality of the dispersion. The diffusion data under different gap sizes and viscosities displayed a good correlation with Kramers' theory. We propose that the yielded activation energies by Kramers' equation express the magnitude of the interaction between fluorescent surfactant tagged h-BN and glass because the energies remain constant with changing viscosity and decrease with increasing confinement size. The diffusion of graphene presented a similar trend with similar activation energy as the h-BN. This relationship suggests that Kramers' theory can also be applied to simulate the diffusion of other 2D nanomaterials.

8.
Acta Cir Bras ; 38: e387323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055404

RESUMEN

PURPOSE: To observe the effect of puerarin on renal ischemia-reperfusion (I/R) injury in rats, and to explore its mechanism based on NLRP3/Caspase-1/GSDMD pathway. METHODS: Twenty-one Sprague-Dawley rats were divided into three groups: sham-operated group (sham), model group (RIRI), and puerarin treatment group (RIRI + Pue). The model of acute renal I/R injury was established by cutting the right kidney and clamping the left renal pedicle for 45 min. RESULTS: Renal function parameters were statistically significant in group comparisons. The renal tissue structure of rats in sham group was basically normal. Pathological changes were observed in the RIRI group. The renal pathological damage score and apoptosis rate in the RIRI group were higher than those in the sham group, and significantly lower in the RIRI + Pue group than in the RIRI group. Indicators of oxidative stress-superoxide dismutase, malondialdehyde, and glutathione peroxidase-were statistically significant in group comparisons. Compared with the sham group, the relative expressions of NLRP3, Caspase-1 and GSDMD proteins in the RIRI group were increased. Compared with the RIRI group, the RIRI + Pue group had significant reductions. CONCLUSIONS: Puerarin can inhibit the activation of NLRP3/Caspase-1/GSDMD pathway, inhibit inflammatory response and pyroptosis, and enhance the antioxidant capacity of kidney, thereby protecting renal I/R injury in rats.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Ratas , Animales , Caspasa 1 , Ratas Sprague-Dawley , Proteína con Dominio Pirina 3 de la Familia NLR , Riñón/patología , Daño por Reperfusión/patología , Lesión Renal Aguda/patología
9.
Quant Imaging Med Surg ; 13(12): 7741-7752, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38106265

RESUMEN

Background: In patients with hepatitis B-related cirrhosis, it is important to predict those at high-risk of oesophagogastric variceal haemorrhage (OVH) to decide upon prophylactic treatment. Our published model developed with right liver lobe volume and diameters of portal vein system did not incorporate maximum variceal size as a factor. This study thus aimed to develop an improved model based on right liver lobe volume, diameters of maximum oesophagogastric varices (OV) and portal vein system obtained at magnetic resonance imaging (MRI) to predict OVH. Methods: Two hundred and thirty consecutive individuals with hepatitis B-related cirrhosis undergoing abdominal enhanced MRI were randomly grouped into training (n=160) and validation sets (n=70). OVH was confirmed in 51 and 23 participants in the training and validation sets during 2-year follow-up period, respectively. Spleen, total liver, right lobe, caudate lobe, left lateral lobe, and left medial lobe volumes, together with diameters of maximum OV and portal venous system were measured on MRI. In the training set, univariate analyses and binary logistic regression analyses were conducted to determine independent predictors. The performance of the model for predicting OVH constructed based on independent predictors from the training set was evaluated with receiver operating characteristic (ROC) analysis and validated in the validation set. Results: The model for predicting OVH was established based on right liver lobe volume and diameters of the maximum OV, left gastric vein, and portal vein [odds ratio (OR) =0.991, 2.462, 1.434, and 1.582, respectively; all P values <0.05]. The logistic regression model equation [-0.009 × right liver lobe volume + 0.901 × maximum OV diameter (MOVD) + 0.361 × left gastric vein diameter (LGVD) + 0.459 × portal vein diameter (PVD) - 7.842] with a cutoff value of -0.656 for predicting OVH obtained excellent performance with an area under ROC curve (AUC) of 0.924 [95% confidence interval (CI): 0.878-0.971]. The Delong test showed negative statistical difference in the model performance between the training and validation sets, with a P value >0.99. Conclusions: The model could help well screen those patients at high risk of OVH for timely intervention and avoiding the fatal complications.

10.
Environ Sci Pollut Res Int ; 30(52): 112908-112921, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37843706

RESUMEN

There have been many analytical methods for natural estrogens in commercial dairy milk samples, but in most of which, only four major estrogens (estrone (E1), 17ß-estradiol (E2), estriol (E3), and 17α-estradiol (αE2)) were included. This work developed an effective GC-MS analytical method for simultaneous analysis of twelve natural estrogens in commercial dairy milk sample, in which eight far-less well-known natural estrogens (2-hydroxyestone (2OHE1), 4-hydroxyestrone (4OHE1), 2-hydroxyestradiol (2OHE2), 4-hydroxyestradiol (4OHE2), 16-epiestriol (16epiE3), 16α-hydroxyestrone (16αOHE1), 16-ketoestradiol (16ketoE2) and 17epiestriol (17epiE3)) were included besides the four major natural estrogens. With liquid-liquid extraction and solid phase extraction, twelve natural estrogens in commercial dairy milk could be effectively extracted. The established method showed good linearity (R2 > 0.9991), low limits of detections (LODs, 0.02-0.11 ng/g), as well as excellent recoveries (64-117%) with satisfactory low relative standard deviations (RSDs, 0.8-14.7%). This established method was applied to seven commercial dairy milk samples, and all the twelve natural estrogens were frequently detected except for 4OHE2 without detection in any sample. Our results showed that the concentration contribution ratios of the eight far-less well-known natural estrogens in commercial dairy milk samples contributed to 32-83%, while the corresponding contribution ratios based on estrogen equivalence (EEQ) were 21-62%. This work highlighted the high abundance of the eight far-less well-known natural estrogens in commercial dairy milk based on both concentration and EEQ, which has been neglected for a long time.


Asunto(s)
Estrógenos , Leche , Animales , Estrógenos/análisis , Cromatografía de Gases y Espectrometría de Masas , Leche/química , Estradiol/análisis , Estriol/análisis , Extracción en Fase Sólida/métodos , Extracción Líquido-Líquido , Cromatografía Líquida de Alta Presión/métodos
11.
Quant Imaging Med Surg ; 13(9): 6089-6104, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37711840

RESUMEN

Background: Extracranial atherosclerosis is one of the major causes of stroke. Carotid computed tomography angiography (CTA) is a widely used imaging modality that allows detailed assessments of plaque characteristics. This study aimed to develop and test radiomics models of carotid plaques and perivascular adipose tissue (PVAT) to distinguish symptomatic from asymptomatic plaques and compare the diagnostic value between radiomics models and traditional CTA model. Methods: A total of 144 patients with carotid plaques were divided into symptomatic and asymptomatic groups. The traditional CTA model was built by the traditional radiological features of carotid plaques measured on CTA images which were screened by univariate analysis and multivariable logistic regression. We extracted and screened radiomics features from carotid plaques and PVAT. Then, a support vector machine was used for building plaque and PVAT radiomics models, as well as a combined model using traditional CTA features and radiomics features. The diagnostic value between radiomics models and traditional CTA model was compared in identifying symptomatic carotid plaques by Delong method. Results: The area under curve (AUC) values of traditional CTA model were 0.624 and 0.624 for the training and validation groups, respectively. The plaque radiomics model and PVAT radiomics model achieved AUC values of 0.766, 0.740 and 0.759, 0.618 in the two groups, respectively. Meanwhile, the combined model of plaque and PVAT radiomics features and traditional CTA features had AUC values of 0.883 and 0.840 for the training and validation groups, respectively, and the receiver operating characteristic curves of combined model were significantly better than those of traditional CTA model in the training group (P<0.001) and validation group (P=0.029). Conclusions: The combined model of the radiomics features of carotid plaques and PVAT and the traditional CTA features significantly contributes to identifying high-risk carotid plaques compared with traditional CTA model.

12.
Opt Lett ; 48(16): 4416-4419, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582046

RESUMEN

A tunable Janus absorptive frequency-selective reflector (AFSR) utilizing a graphene-based hyperbolic that showcases exceptional doubling octave frequency absorption (DOFA) or tripling octave frequency absorption (TOFA) is proposed. The multi-objective gray wolf optimization algorithm is employed to drive the transfer matrix method, optimizing parameters such as the dielectric permittivity, thickness, and the Fermi level (Ef) to achieve harmonic absorption. By manipulating the Ef of graphene, the dimensions of the absorption band and reflection window can be finely adjusted. Additionally, a frequency-selective reflector is introduced, enabling a seamless transition between selective absorption and transmission by adjusting the Ef. This AFSR represents a groundbreaking approach to achieving DOFA or TOFA while simultaneously offering valuable insights into the design of intelligent AFSRs.

13.
Front Immunol ; 14: 1200289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483597

RESUMEN

Nowadays, people have relaxed their vigilance against COVID-19 due to its declining infection numbers and attenuated virulence. However, COVID-19 still needs to be concern due to its emerging variants, the relaxation of restrictions as well as breakthrough infections. During the period of the COVID-19 infection, the imbalanced and hyper-responsive immune system plays a critical role in its pathogenesis. Macrophage Activation Syndrome (MAS) is a fatal complication of immune system disease, which is caused by the excessive activation and proliferation of macrophages and cytotoxic T cells (CTL). COVID-19-related hyperinflammation shares common clinical features with the above MAS symptoms, such as hypercytokinemia, hyperferritinemia, and coagulopathy. In MAS, immune exhaustion or defective anti-viral responses leads to the inadequate cytolytic capacity of CTL which contributes to prolonged interaction between CTL, APCs and macrophages. It is possible that the same process also occurred in COVID-19 patients, and further led to a cytokine storm confined to the lungs. It is associated with the poor prognosis of severe patients such as multiple organ failure and even death. The main difference of cytokine storm is that in COVID-19 pneumonia is mainly the specific damage of the lung, while in MAS is easy to develop into a systemic. The attractive therapeutic approach to prevent MAS in COVID-19 mainly includes antiviral, antibiotics, convalescent plasma (CP) therapy and hemadsorption, extensive immunosuppressive agents, and cytokine-targeted therapies. Here, we discuss the role of the therapeutic approaches mentioned above in the two diseases. And we found that the treatment effect of the same therapeutic approach is different.


Asunto(s)
COVID-19 , Síndrome de Activación Macrofágica , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Síndrome de Liberación de Citoquinas , Sueroterapia para COVID-19
14.
Phys Chem Chem Phys ; 25(29): 19666-19683, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37436136

RESUMEN

A Janus metastructure (MS) assisted by a waveguide structure (WGS) resting on anapole modes and exhibiting direction-dependent behavior has been developed in the terahertz (THz) region. Ultra-broadband absorption is formed by the destructive interference through the anapole as well as Janus trait and is shaped by nested WGS. In this design, vanadium dioxide (VO2) is expected to attain functional transformation from plasmon-induced transparency (PIT) to absorption. The insulating nature of the VO2 results in the creation of the PIT, which is characterized by a wide and high transmission window ranging from 1.944 THz to 2.284 THz, corresponding to the relative bandwidth of 7.4% above 0.9. However, when the VO2 reaches the metallic state, a high absorptivity of 0.921 at 2.154 THz can be implemented in the -z-direction owing to the excitement of the toroidal dipole and electric dipole moments in the near-infrared region. And in the +z-direction, the broadband absorption above 0.9 in the 1.448-2.497 THz range takes shape in virtue of surface plasmon polariton modes, in which intensely localized oscillation of free electrons is confined to the metal-dielectric interface supported by the WGS. Noting that the MS is equipped with a favorable sensitivity to the incidence angle, we develop an ultra-broadband backward absorption in the TM mode from 0.7-10 THz nearly all above 0.9 when the incidence angle changes from 30°-70°. Moreover, owing to the highly symmetrical structure, the MS exhibits exotic polarization angular stability. All the awesome properties make this MS a good candidate for various applications such as in electromagnetic wave steering, spectral analysis, and sensors.

15.
Front Neurosci ; 17: 1206491, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476835

RESUMEN

Objective: Prior research has shown mixed results regarding the effectiveness of combining donepezil and traditional Chinese medicine (TCM) to treat mild cognitive impairment (MCI). In light of this, our study aims to examine the efficacy and safety of this treatment approach for patients with MCI. Methods: We conducted a comprehensive search of various databases, including Medline (via PubMed), Cochrane, Embase, Web of Science, Chinese National Knowledge Infrastructure, Chinese Biomedical Literature Database, Chinese Scientific Journal Database, and Wanfang Database from their inception to November 16, 2022. The selection of studies, risk of bias assessment, and data extraction were carried out independently by two authors. The statistical analysis was performed using STATA. Results: Our meta-analysis included a total of 35 studies with 2,833 patients, published between 2008 and 2022, with intervention durations ranging from 4 weeks to 12 months. However, most of the studies had a high risk of detection bias. Our findings indicated that the combination of donepezil and TCM significantly improved the Montreal Cognitive Assessment (MoCA) score (weighted mean difference [WMD] = 2.79, 95% confidence interval [CI]: 1.82 to 3.75) and the Barthel Index score (WMD = 9.20, 95% CI: 5.39 to 13.00) compared to donepezil alone. However, subgroup analyses showed that the MoCA score did not increase significantly in patients with MCI resulting from cerebrovascular disease (WMD = 1.47, 95% CI: -0.02 to 2.96). Conclusion: The combination of donepezil and TCM may have a more positive effect on cognitive function and activities of daily living in patients with MCI compared to the use of donepezil alone. However, due to the limited quality of the studies included in our analysis, these findings should be interpreted with caution.

16.
Water Res ; 243: 120310, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37473512

RESUMEN

Bisphenol analogues (BPs) and natural estrogens (NEs) as two important groups of endocrine-disrupting compounds (EDCs) in drinking water treatment plants (DWTPs) have been hardly investigated except bisphenol A (BPA) and three major NEs including estrone (E1), 17ß-estradiol (E2) and estriol (E3). In this study, a GC-MS analytical method was firstly established and validated for trace simultaneous determination of ten BPs and twelve NEs in drinking water, which included BPA, bisphenol B (BPB), bisphenol C (BPC), bisphenol E (BPE), bsiphenol F (BPF), bsiphenol P (BPP), bisphenol S (BPS), bisphenol Z (BPZ), bisphenol AF (BPAF), bisphenol AP (BPAP), E1, E2, E3, 17α-estradiol (17α-E2), 2-hydroestrone (2OHE1), 16hydroxyestrone (16α-OHE1), 4-hydroestrone (4OHE1), 2-hydroxyesstradiol (2OHE2), 4-hydroxyestradiol (4OHE2), 17-epiestriol (17epiE3), 16-epiestriol (16epiE3) and 16keto-estraiol (16ketoE2). This investigation showed that eighteen out of twenty-two targeted compounds were detected in drinking source waters of eight DWTPs with concentrations ranging from not detected to 142.8 ng/L. Although the conventional treatment process of DWTP could efficiently remove both BPs and NEs with respective removal efficiencies of 74.1%-90.9% and 74.5%-100%, BPA, BPS, BPE, BPZ, E1, 2OHE1, and 2OHE2 were found in the finished drinking waters. Chlorination could remove part of BPs and NEs, but the efficiency varied greatly with DWTP and the reason was unknown. In the finished drinking waters of eight DWTPs, the highest chemically calculated estrogen equivalence (EEQ) derived from BPs and NEs was up to 6.11 ngE2/L, which was over 22 times that could do harm to zebrafish, indicating a potential risk to human health. Given the fact that many chlorination products of BPs and NEs likely have higher estrogenic activities, the estrogenic effect of BPs and NEs in finished drinking water should be accurately examined urgently with the inclusion of BPs, NEs as well as their main chlorinated by-products. This study shed new light on the occurrence, removal, and potential estrogenic effects of BPs and NEs in DWTPs.


Asunto(s)
Agua Potable , Purificación del Agua , Humanos , Animales , Estrógenos/análisis , Pez Cebra , Estrona , Estradiol , Compuestos de Bencidrilo/química , Estriol
17.
Am J Drug Alcohol Abuse ; 49(4): 431-439, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37367946

RESUMEN

MATERIALS: Patients with alcoholic acute pancreatitis in our hospital were recruited from Jan 2019 to July 2022 and divided into IAAP and RAAP groups. All patients underwent Contrast-Enhanced Computerized Tomography (CECT) or Magnetic Resonance Imaging (MRI) after administration. Imaging manifestations, local complications, severity scores on the Modified CT/MR Severity Index (MCTSI/MMRSI), Extrapancreatic Inflammation on CT/MR (EPIC/M), clinical severity [Bedside Index for Severity in Acute Pancreatitis (BISAP) Acute Physiology and Chronic Health Evaluation (APACHE-II)], and clinical prognosis were compared between the two groups.Results: 166 patients were recruited for this study, including 134 IAAP (male sex 94%) and 32 RAAP patients (male sex 100%). On CECT or MRI, IAAP patients were more likely to develop ascites and Acute Necrosis collection (ANC) than RAAP patients (ascites:87.3%vs56.2%; P = .01; ANC:38%vs18.7%; P < .05). MCTSI/MMRSI and EPIC/M scores were higher in IAAP than in RAAP patients(MCTSI/MMRSI:6.2vs5.2; P < .05; EPIC/M:5.4vs3.8; P < .05).Clinical severity scores (APACHE-II and BISAP), length of stay, and systemic complications [Systemic Inflammatory Response Syndrome (SIRS), respiratory failure] were higher in the IAAP group than in the RAAP group (P < .05). No mortality outcomes were reported in either group while hospitalized.Conclusions: Patients with IAAP had more severe disease than those with RAAP. These results may be helpful for differentiating care paths for IAAP and RAAP, which are essential for management and timely treatment in clinical practice.


Asunto(s)
Pancreatitis , Humanos , Masculino , Pancreatitis/diagnóstico por imagen , Pancreatitis/complicaciones , Estudios Transversales , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Enfermedad Aguda , Ascitis/complicaciones , Valor Predictivo de las Pruebas , Pronóstico
18.
Phys Chem Chem Phys ; 25(26): 17558-17570, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37358807

RESUMEN

The layered photonic structure (LPS) sensor presented in this paper utilizes the intrinsic absorption principle of graphene which can improve the absorption rate by stacking layers to generate an absorption peak within the terahertz (THz) frequency range. The absorption peak can be used for multi-dimensional detection of glucose solution, alcohol solution, the applied voltage of graphene, the thickness of hyperbolic metamaterials (HMs), and room temperature. LPS is endowed with characteristics of a Janus metastructure through the non-stacked arrangement of different media and can have different sensing properties when the electromagnetic waves (EWs) are incident forward and backward. The Janus metastructure features in the forward and backward direction make it have different physical characteristics, forming sensors with different resolutions and qualities, so as to realize the detection of multiple physical quantities. One device has the detection performance of multiple substances, which greatly improves the utilization rate of the design structure. Furthermore, the addition of HM to the sensor structure enables it to exhibit angle-insensitive characteristics in both forward and backward directions. To further enhance the sensor's performance, the particle swarm optimization (PSO) algorithm is used to optimize structural parameters. The resulting sensor exhibits excellent sensing performance, with a high sensitivity (S) of 940.34 THz per RIU and quality factor (Q) and figure of merit (FOM) values of 37 4700 RIU-1, respectively, when measuring voltage. For glucose and alcohol solutions, the sensor demonstrates S values of 5.52 THz per RIU and 4.44 THz per RIU, Q values of 8.3 and 37.2, and FOM values of 6.2 RIU-1 and 20.2 RIU-1, respectively in different directions.

20.
Antimicrob Agents Chemother ; 67(5): e0172122, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37022169

RESUMEN

Data on the distribution of voriconazole (VRC) in the human peritoneal cavity are sparse. This prospective study aimed to describe the pharmacokinetics of intravenous VRC in the peritoneal fluid of critically ill patients. A total of 19 patients were included. Individual pharmacokinetic curves, drawn after single (first dose on day 1) and multiple (steady-state) doses, displayed a slower rise and lower fluctuation of VRC concentrations in peritoneal fluid than in plasma. Good but variable penetration of VRC into the peritoneal cavity was observed, and the median (range) peritoneal fluid/plasma ratios of the area under the concentration-time curve (AUC) were 0.54 (0.34 to 0.73) and 0.67 (0.63 to 0.94) for single and multiple doses, respectively. Approximately 81% (13/16) of the VRC steady-state trough concentrations (Cmin,ss) in plasma were within the therapeutic range (1 to 5.5 µg/mL), and the corresponding Cmin,ss (median [range]) in peritoneal fluid was 2.12 (1.39 to 3.72) µg/mL. Based on the recent 3-year (2019 to 2021) surveillance of the antifungal susceptibilities for Candida species isolated from peritoneal fluid in our center, the aforementioned 13 Cmin,ss in peritoneal fluid exceeded the MIC90 of C. albicans, C. glabrata, and C. parapsilosis (0.06, 1.00, and 0.25 µg/mL, respectively), which supported VRC as a reasonable choice for initial empirical therapies against intraabdominal candidiasis caused by these three Candida species, prior to the receipt of susceptibility testing results.


Asunto(s)
Líquido Ascítico , Enfermedad Crítica , Humanos , Voriconazol/farmacocinética , Estudios Prospectivos , Antifúngicos/farmacocinética , Candida glabrata , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA