Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-37259327

RESUMEN

Idiopathic pulmonary fibrosis is a chronic, progressive and lethal disease of unknown etiology that ranks among the most frequent interstitial lung diseases. Idiopathic pulmonary fibrosis is characterized by dysregulated healing mechanisms that lead to the accumulation of large amounts of collagen in the lung tissue that disrupts the alveolar architecture. The two currently available treatments, nintedanib and pirfenidone, are only able to slow down the disease without being curative. We demonstrated in the past that HSPB5, a low molecular weight heat shock protein, was involved in the development of fibrosis and therefore was a potential therapeutic target. Here, we have explored whether NCI-41356, a chemical inhibitor of HSPB5, can limit the development of pulmonary fibrosis. In vivo, we used a mouse model in which fibrosis was induced by intratracheal injection of bleomycin. Mice were treated with NaCl or NCI-41356 (six times intravenously or three times intratracheally). Fibrosis was evaluated by collagen quantification, immunofluorescence and TGF-ß gene expression. In vitro, we studied the specific role of NCI-41356 on the chaperone function of HSPB5 and the inhibitory properties of NCI-41356 on HSPB5 interaction with its partner SMAD4 during fibrosis. TGF-ß1 signaling was evaluated by immunofluorescence and Western Blot in epithelial cells treated with TGF-ß1 with or without NCI-41356. In vivo, NCI-41356 reduced the accumulation of collagen, the expression of TGF-ß1 and pro-fibrotic markers (PAI-1, α-SMA). In vitro, NCI-41356 decreased the interaction between HSPB5 and SMAD4 and thus modulated the SMAD4 canonical nuclear translocation involved in TGF-ß1 signaling, which may explain NCI-41356 anti-fibrotic properties. In this study, we determined that inhibition of HSPB5 by NCI-41356 could limit pulmonary fibrosis in mice by limiting the synthesis of collagen and pro-fibrotic markers. At the molecular level, this outcome may be explained by the effect of NCI-41356 inhibiting HSPB5/SMAD4 interaction, thus modulating SMAD4 and TGF-ß1 signaling. Further investigations are needed to determine whether these results can be transposed to humans.

2.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502225

RESUMEN

Interstitial lung diseases (ILDs) include a large number of diseases and causes with variable outcomes often associated with progressive fibrosis. Although each of the individual fibrosing ILDs are rare, collectively, they affect a considerable number of patients, representing a significant burden of disease. Idiopathic pulmonary fibrosis (IPF) is the typical chronic fibrosing ILD associated with progressive decline in lung. Other fibrosing ILDs are often associated with connective tissues diseases, including rheumatoid arthritis-ILD (RA-ILD) and systemic sclerosis-associated ILD (SSc-ILD), or environmental/drug exposure. Given the vast number of progressive fibrosing ILDs and the disparities in clinical patterns and disease features, the course of these diseases is heterogeneous and cannot accurately be predicted for an individual patient. As a consequence, the discovery of novel biomarkers for these types of diseases is a major clinical challenge. Heat shock proteins (HSPs) are molecular chaperons that have been extensively described to be involved in fibrogenesis. Their extracellular forms (eHSPs) have been recently and successfully used as therapeutic targets or circulating biomarkers in cancer. The current review will describe the role of eHSPs in fibrosing ILDs, highlighting the importance of these particular stress proteins to develop new therapeutic strategies and discover potential biomarkers in these diseases.


Asunto(s)
Biomarcadores/metabolismo , Proteínas de Choque Térmico/antagonistas & inhibidores , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Animales , Progresión de la Enfermedad , Proteínas de Choque Térmico/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Enfermedades Pulmonares Intersticiales/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Terapia Molecular Dirigida
3.
Eur J Nucl Med Mol Imaging ; 48(10): 3058-3074, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33580818

RESUMEN

PURPOSE: Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor outcome and limited therapeutic options. Imaging of IPF is limited to high-resolution computed tomography (HRCT) which is often not sufficient for a definite diagnosis and has a limited impact on therapeutic decision and patient management. Hypoxia of the lung is a significant feature of IPF but its role on disease progression remains elusive. Thus, the aim of our study was to evaluate hypoxia imaging with [18F]FMISO as a predictive biomarker of disease progression and therapy efficacy in preclinical models of lung fibrosis in comparison with [18F]FDG. METHODS: Eight-week-old C57/BL6 mice received an intratracheal administration of bleomycin (BLM) at day (D) 0 to initiate lung fibrosis. Mice received pirfenidone (300 mg/kg) or nintedanib (60 mg/kg) by daily gavage from D9 to D23. Mice underwent successive PET/CT imaging at several stages of the disease (baseline, D8/D9, D15/D16, D22/D23) with [18F]FDG and [18F]FMISO. Histological determination of the lung expression of HIF-1α and GLUT-1 was performed at D23. RESULTS: We demonstrate that mean lung density on CT as well as [18F]FDG and [18F]FMISO uptakes are upregulated in established lung fibrosis (1.4-, 2.6- and 3.2-fold increase respectively). At early stages, lung areas with [18F]FMISO uptake are still appearing normal on CT scans and correspond to areas which will deteriorate towards fibrotic lesions at later timepoints. Nintedanib and pirfenidone dramatically and rapidly decreased mean lung density on CT as well as [18F]FDG and [18F]FMISO lung uptakes (pirfenidone: 1.2-, 2.9- and 2.6-fold decrease; nintedanib: 1.2-, 2.3- and 2.5-fold decrease respectively). Early [18F]FMISO lung uptake was correlated with aggressive disease progression and better nintedanib efficacy. CONCLUSION: [18F]FMISO PET imaging is a promising tool to early detect and monitor lung fibrosis progression and therapy efficacy.


Asunto(s)
Fluorodesoxiglucosa F18 , Fibrosis Pulmonar Idiopática , Animales , Biomarcadores , Progresión de la Enfermedad , Humanos , Hipoxia , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Ratones , Misonidazol/análogos & derivados , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Radiofármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...