Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Adv Sci (Weinh) ; 11(12): e2306469, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38235614

RESUMEN

In Alzheimer's disease (AD), dysfunctional mitochondrial metabolism is associated with synaptic loss, the major pathological correlate of cognitive decline. Mechanistic insight for this relationship, however, is still lacking. Here, comparing isogenic wild-type and AD mutant human induced pluripotent stem cell (hiPSC)-derived cerebrocortical neurons (hiN), evidence is found for compromised mitochondrial energy in AD using the Seahorse platform to analyze glycolysis and oxidative phosphorylation (OXPHOS). Isotope-labeled metabolic flux experiments revealed a major block in activity in the tricarboxylic acid (TCA) cycle at the α-ketoglutarate dehydrogenase (αKGDH)/succinyl coenzyme-A synthetase step, metabolizing α-ketoglutarate to succinate. Associated with this block, aberrant protein S-nitrosylation of αKGDH subunits inhibited their enzyme function. This aberrant S-nitrosylation is documented not only in AD-hiN but also in postmortem human AD brains versus controls, as assessed by two separate unbiased mass spectrometry platforms using both SNOTRAP identification of S-nitrosothiols and chemoselective-enrichment of S-nitrosoproteins. Treatment with dimethyl succinate, a cell-permeable derivative of a TCA substrate downstream to the block, resulted in partial rescue of mitochondrial bioenergetic function as well as reversal of synapse loss in AD-hiN. These findings have therapeutic implications that rescue of mitochondrial energy metabolism can ameliorate synaptic loss in hiPSC-based models of AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Enfermedad de Alzheimer/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Metabolismo Energético/fisiología , Glucólisis , Neuronas/metabolismo
2.
Cell Chem Biol ; 30(8): 965-975.e6, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37478858

RESUMEN

A causal relationship between mitochondrial metabolic dysfunction and neurodegeneration has been implicated in synucleinopathies, including Parkinson disease (PD) and Lewy body dementia (LBD), but underlying mechanisms are not fully understood. Here, using human induced pluripotent stem cell (hiPSC)-derived neurons with mutation in the gene encoding α-synuclein (αSyn), we report the presence of aberrantly S-nitrosylated proteins, including tricarboxylic acid (TCA) cycle enzymes, resulting in activity inhibition assessed by carbon-labeled metabolic flux experiments. This inhibition principally affects α-ketoglutarate dehydrogenase/succinyl coenzyme-A synthetase, metabolizing α-ketoglutarate to succinate. Notably, human LBD brain manifests a similar pattern of aberrantly S-nitrosylated TCA enzymes, indicating the pathophysiological relevance of these results. Inhibition of mitochondrial energy metabolism in neurons is known to compromise dendritic length and synaptic integrity, eventually leading to neuronal cell death. Our evidence indicates that aberrant S-nitrosylation of TCA cycle enzymes contributes to this bioenergetic failure.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Sinucleinopatías , Humanos , Sinucleinopatías/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Parkinson/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo
3.
Sci Adv ; 8(50): eade0764, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36516243

RESUMEN

Protein S-nitros(yl)ation (SNO) is a posttranslational modification involved in diverse processes in health and disease and can contribute to synaptic damage in Alzheimer's disease (AD). To identify SNO proteins in AD brains, we used triaryl phosphine (SNOTRAP) combined with mass spectrometry (MS). We detected 1449 SNO proteins with 2809 SNO sites, representing a wide range of S-nitrosylated proteins in 40 postmortem AD and non-AD human brains from patients of both sexes. Integrative protein ranking revealed the top 10 increased SNO proteins, including complement component 3 (C3), p62 (SQSTM1), and phospholipase D3. Increased levels of S-nitrosylated C3 were present in female over male AD brains. Mechanistically, we show that formation of SNO-C3 is dependent on falling ß-estradiol levels, leading to increased synaptic phagocytosis and thus synapse loss and consequent cognitive decline. Collectively, we demonstrate robust alterations in the S-nitrosoproteome that contribute to AD pathogenesis in a sex-dependent manner.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Femenino , Enfermedad de Alzheimer/metabolismo , Proteínas/química , Encéfalo/metabolismo , Procesamiento Proteico-Postraduccional , Sinapsis/metabolismo
4.
Antioxid Redox Signal ; 35(7): 531-550, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33957758

RESUMEN

Significance: Physiological concentrations of nitric oxide (NO•) and related reactive nitrogen species (RNS) mediate multiple signaling pathways in the nervous system. During inflammaging (chronic low-grade inflammation associated with aging) and in neurodegenerative diseases, excessive RNS contribute to synaptic and neuronal loss. "NO signaling" in both health and disease is largely mediated through protein S-nitrosylation (SNO), a redox-based posttranslational modification with "NO" (possibly in the form of nitrosonium cation [NO+]) reacting with cysteine thiol (or, more properly, thiolate anion [R-S-]). Recent Advances: Emerging evidence suggests that S-nitrosylation occurs predominantly via transnitros(yl)ation. Mechanistically, the reaction involves thiolate anion, as a nucleophile, performing a reversible nucleophilic attack on a nitroso nitrogen to form an SNO-protein adduct. Prior studies identified transnitrosylation reactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-nuclear proteins, thioredoxin-caspase-3, and X-linked inhibitor of apoptosis (XIAP)-caspase-3. Recently, we discovered that enzymes previously thought to act in completely disparate biochemical pathways can transnitrosylate one another during inflammaging in an unexpected manner to mediate neurodegeneration. Accordingly, we reported a concerted tricomponent transnitrosylation network from Uch-L1-to-Cdk5-to-Drp1 that mediates synaptic damage in Alzheimer's disease. Critical Issues: Transnitrosylation represents a critical chemical mechanism for transduction of redox-mediated events to distinct subsets of proteins. Although thousands of thiol-containing proteins undergo S-nitrosylation, how transnitrosylation regulates a myriad of neuronal attributes is just now being uncovered. In this review, we highlight recent progress in the study of the chemical biology of transnitrosylation between proteins as a mechanism of disease. Future Directions: We discuss future areas of study of protein transnitrosylation that link our understanding of aging, inflammation, and neurodegenerative diseases. Antioxid. Redox Signal. 35, 531-550.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Especies de Nitrógeno Reactivo/metabolismo , Transducción de Señal
5.
Int J Mol Sci ; 21(11)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486366

RESUMEN

BACKGROUND: Accumulating public health and epidemiological literature support the hypothesis that arsenic in drinking water or food affects the brain adversely. METHODS: Experiments on the consequences of nitric oxide (NO) formation in neuronal cell culture and mouse brain were conducted to probe the mechanistic pathways of nitrosative damage following arsenic exposure. RESULTS: After exposure of mouse embryonic neuronal cells to low doses of sodium arsenite (SA), we found that Ca2+ was released leading to the formation of large amounts of NO and apoptosis. Inhibition of NO synthase prevented neuronal apoptosis. Further, SA led to concerted S-nitrosylation of proteins significantly associated with synaptic vesicle recycling and acetyl-CoA homeostasis. Our findings show that low-dose chronic exposure (0.1-1 ppm) to SA in the drinking water of mice led to S-nitrosylation of proteomic cysteines. Subsequent removal of arsenic from the drinking water reversed the biochemical alterations. CONCLUSIONS: This work develops a mechanistic understanding of the role of NO in arsenic-mediated toxicity in the brain, incorporating Ca2+ release and S-nitrosylation as important modifiers of neuronal protein function.


Asunto(s)
Apoptosis , Arsénico/análisis , Arsénico/toxicidad , Neuronas/efectos de los fármacos , Óxido Nítrico/metabolismo , Acetilcoenzima A/metabolismo , Animales , Arsenitos , Encéfalo/metabolismo , Calcio/metabolismo , Biología Computacional , Modelos Animales de Enfermedad , Agua Potable , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Nitrógeno/química , Estrés Nitrosativo , Proteómica , Compuestos de Sodio , Contaminantes del Agua/análisis
6.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396408

RESUMEN

Epigenetic dysregulation is hypothesized to play a role in the observed association between inflammatory bowel disease (IBD) and colon tumor development. In the present work, DNA methylome, hydroxymethylome, and transcriptome analyses were conducted in proximal colon tissues harvested from the Helicobacter hepaticus (H. hepaticus)-infected murine model of IBD. Reduced representation bisulfite sequencing (RRBS) and oxidative RRBS (oxRRBS) analyses identified 1606 differentially methylated regions (DMR) and 3011 differentially hydroxymethylated regions (DhMR). These DMR/DhMR overlapped with genes that are associated with gastrointestinal disease, inflammatory disease, and cancer. RNA-seq revealed pronounced expression changes of a number of genes associated with inflammation and cancer. Several genes including Duox2, Tgm2, Cdhr5, and Hk2 exhibited changes in both DNA methylation/hydroxymethylation and gene expression levels. Overall, our results suggest that chronic inflammation triggers changes in methylation and hydroxymethylation patterns in the genome, altering the expression of key tumorigenesis genes and potentially contributing to the initiation of colorectal cancer.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Hiperplasia/patología , Enfermedades Inflamatorias del Intestino/complicaciones , Interleucina-10/fisiología , Transcriptoma , Animales , Modelos Animales de Enfermedad , Epigenómica , Femenino , Hiperplasia/etiología , Hiperplasia/metabolismo , Masculino , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas
7.
Mol Psychiatry ; 25(8): 1835-1848, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988084

RESUMEN

Mutation in the SHANK3 human gene leads to different neuropsychiatric diseases including Autism Spectrum Disorder (ASD), intellectual disabilities and Phelan-McDermid syndrome. Shank3 disruption in mice leads to dysfunction of synaptic transmission, behavior, and development. Protein S-nitrosylation, the nitric oxide (NO•)-mediated posttranslational modification (PTM) of cysteine thiols (SNO), modulates the activity of proteins that regulate key signaling pathways. We tested the hypothesis that Shank3 mutation would generate downstream effects on PTM of critical proteins that lead to modification of synaptic functions. SNO-proteins in two ASD-related brain regions, cortex and striatum of young and adult InsG3680(+/+) mice (a human mutation-based Shank3 mouse model), were identified by an innovative mass spectrometric method, SNOTRAP. We found changes of the SNO-proteome in the mutant compared to WT in both ages. Pathway analysis showed enrichment of processes affected in ASD. SNO-Calcineurin in mutant led to a significant increase of phosphorylated Synapsin1 and CREB, which affect synaptic vesicle mobilization and gene transcription, respectively. A significant increase of 3-nitrotyrosine was found in the cortical regions of the adult mutant, signaling both oxidative and nitrosative stress. Neuronal NO• Synthase (nNOS) was examined for levels and localization in neurons and no significant difference was found in WT vs. mutant. S-nitrosoglutathione concentrations were higher in mutant mice compared to WT. This is the first study on NO•-related molecular changes and SNO-signaling in the brain of an ASD mouse model that allows the characterization and identification of key proteins, cellular pathways, and neurobiological mechanisms that might be affected in ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Proteínas de Microfilamentos/genética , Mutación , Proteínas del Tejido Nervioso/genética , Proteoma/metabolismo , Sinapsis/metabolismo , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Proteoma/química
8.
Anal Chem ; 91(13): 8667-8675, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31181164

RESUMEN

Human-on-a-chip systems are rapidly advancing due to the availability of human stem cells from a variety of tissues, but publications have utilized mostly simple methods of biochemical analysis. Here, we apply mass spectrometry to a sophisticated multiorgan human-on-a-chip system for the comprehensive study of tolcapone metabolite profiling and metabolomics. The developed human-on-a-chip includes seven interacting microphysiological systems (MPSs), brain, pancreas, liver, lung, heart, gut, and endometrium, with a mixer chamber for systemic circulation and tolcapone dose. We investigated tolcapone metabolism by analyzing the circulating medium using mass spectrometry. Twelve tolcapone metabolites were identified, three of which are newly reported. These metabolites demonstrated that oxidation, reduction, and conjugation reactions were the most important routes of tolcapone metabolism. In parallel, metabolomics in brain MPS evaluated the tolcapone influences on endogenous pathways in human brain. Untargeted metabolomics identified 18 key biomarkers significantly changed in human brain MPS after tolcapone dosing, which were mainly associated with perturbation of tryptophan and phenylalanine metabolism (BH4 cycle), glycerophospholipid metabolism, energy metabolism, and aspartate metabolism. This is the first example of successfully combining drug metabolism, metabolomics, and cell engineering to capture complex human physiology and the multiorgan interactions; the results we present here could be a step toward using analytical chemistry to advance the utilization of human-on-a-chip for testing both drug efficacy and toxicity in a single system.


Asunto(s)
Biomarcadores/metabolismo , Encéfalo/metabolismo , Hígado/metabolismo , Espectrometría de Masas/métodos , Metaboloma , Microtecnología/métodos , Tolcapona/metabolismo , Metabolismo Energético , Humanos , Metabolismo de los Lípidos , Microtecnología/instrumentación
9.
Arh Hig Rada Toksikol ; 70(1): 18-29, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30956221

RESUMEN

Exposure to alkyl anilines may lead to bladder cancer, which is the second most frequent cancer of the urogenital tract. 3,5-dimethylaniline is highly used in industry. Studies on its primary metabolite 3,5-dimethylaminophenol (3,5-DMAP) showed that this compound causes oxidative stress, changes antioxidant enzyme activities, and leads to death of different mammalian cells. However, there is no in vitro study to show the direct effects of 3,5-DMAP on human bladder and urothelial cells. Selenocompounds are suggested to decrease oxidative stress caused by some chemicals, and selenium supplementation was shown to reduce the risk of bladder cancer. The main aim of this study was to investigate whether selenocompounds organic selenomethionine (SM, 10 µmol/L) or inorganic sodium selenite (SS, 30 nmol/L) could reduce oxidative stress, DNA damage, and apoptosis in UROtsa cells exposed to 3,5-DMAP. 3,5-DMAP caused a dose-dependent increase in intracellular generation of reactive oxygen species, and its dose of 50 µmol/L caused lipid peroxidation, protein oxidation, and changes in antioxidant enzyme activities in different cellular fractions. The comet assay also showed single-strand DNA breaks induced by the 3,5-DMAP dose of 50 µmol/L, but no changes in double-strand DNA breaks. Apoptosis was also triggered. Both selenocompounds provided partial protection against the cellular toxicity of 3,5-DMAP. Low selenium status along with exposure to alkyl anilines can be a major factor in the development of bladder cancer. More mechanistic studies are needed to specify the role of selenium in bladder cancer.


Asunto(s)
Aminofenoles/toxicidad , Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Factores Protectores , Compuestos de Selenio/farmacología , Urotelio/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos
10.
Transl Psychiatry ; 9(1): 44, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696811

RESUMEN

Mutations in the MAPT gene, which encodes the tau protein, are associated with several neurodegenerative diseases, including frontotemporal dementia (FTD), dementia with epilepsy, and other types of dementia. The missense mutation in the Mapt gene in the P301S mouse model of FTD results in impaired synaptic function and microgliosis at three months of age, which are the earliest manifestations of disease. Here, we examined changes in the S-nitrosoproteome in 2-month-old transgenic P301S mice in order to detect molecular events corresponding to early stages of disease progression. S-nitrosylated (SNO) proteins were identified in two brain regions, cortex and hippocampus, in P301S and Wild Type (WT) littermate control mice. We found major changes in the S-nitrosoproteome between the groups in both regions. Several pathways converged to show that calcium regulation and non-canonical Wnt signaling are affected using GO and pathway analysis. Significant increase in 3-nitrotyrosine was found in the CA1 and entorhinal cortex regions, which indicates an elevation of oxidative stress and nitric oxide formation. There was evidence of increased Non-Canonical Wnt/Ca++ (NC-WCa) signaling in the cortex of the P301S mice; including increases in phosphorylated CaMKII, and S-nitrosylation of E3 ubiquitin-protein ligase RNF213 (RNF-213) leading to increased levels of nuclear factor of activated T-cells 1 (NFAT-1) and FILAMIN-A, which further amplify the NC-WCa and contribute to the pathology. These findings implicate activation of the NC-WCa pathway in tauopathy and provide novel insights into the contribution of S-nitrosylation to NC-WCa activation, and offer new potential drug targets for treatment of tauopathies.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Encéfalo/metabolismo , Señalización del Calcio , Óxido Nítrico/metabolismo , Tauopatías/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt , Animales , Corteza Cerebral/metabolismo , Corteza Entorrinal/metabolismo , Filaminas/metabolismo , Ontología de Genes , Hipocampo/metabolismo , Masculino , Ratones Transgénicos , Factores de Transcripción NFATC/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Proteoma , Proteómica
11.
Mikrochim Acta ; 186(2): 104, 2019 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-30637518

RESUMEN

Magnetic silica nanoparticles (MSNPs) were prepared and applied for the first time as a matrix in MALDI MS for analysis of small thermally labile biomolecules including oligosaccharides, amino acids, peptides, nucleosides, and ginsenosides. The matrix was characterized by scanning electron microscopy and UV-vis spectroscopy. It displays good performance in analyses of such biomolecules in the positive ion mode. In addition, the method generates significantly less energetic ions compared to the use of carbon nanotubes or graphene-assisted LDI MS and thus produces intact molecular ions with little or no fragmentation. In addition, the MSNPs have better surface homogeneity and better salt tolerance and cause lower noise. It is assumed that the soft ionization observed when using MSNPs as a matrix is due to the specific surface area and the homogenous surface without large clusters. The matrices were applied to the unambiguous identification and relative quantitation of the water extract of Panax ginseng roots. Any false-positive results as obtained when using graphene and carbon nanotubes as a matrix were not observed. Graphical abstract Schematic presentation of the application of magnetic silica nanoparticles in laser desorption ionization mass spectrometry. Their use results in little or no fragmentation during analysis of small labile biomolecules with some advantages such as better surface homogeneity, high salt tolerance, and lower noise.


Asunto(s)
Aminoácidos/análisis , Nanopartículas/química , Nucleósidos/análisis , Oligosacáridos/análisis , Péptidos/análisis , Dióxido de Silicio/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Aminoácidos/química , Imanes/química , Nanotubos de Carbono/química , Nucleósidos/química , Oligosacáridos/química , Panax/química , Péptidos/química
12.
DNA Repair (Amst) ; 68: 25-33, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29929044

RESUMEN

It is well established that inflammation leads to the creation of potent DNA damaging chemicals, including reactive oxygen and nitrogen species. Nitric oxide can react with glutathione to create S-nitrosoglutathione (GSNO), which can in turn lead to S-nitrosated proteins. Of particular interest is the impact of GSNO on the function of DNA repair enzymes. The base excision repair (BER) pathway can be initiated by the alkyl-adenine DNA glycosylase (AAG), a monofunctional glycosylase that removes methylated bases. After base removal, an abasic site is formed, which then gets cleaved by AP endonuclease and processed by downstream BER enzymes. Interestingly, using the Fluorescence-based Multiplexed Host Cell Reactivation Assay (FM-HCR), we show that GSNO actually enhances AAG activity, which is consistent with the literature. This raised the possibility that there might be imbalanced BER when cells are challenged with a methylating agent. To further explore this possibility, we confirmed that GSNO can cause AP endonuclease to translocate from the nucleus to the cytoplasm, which might further exacerbate imbalanced BER by increasing the levels of AP sites. Analysis of abasic sites indeed shows GSNO induces an increase in the level of AP sites. Furthermore, analysis of DNA damage using the CometChip (a higher throughput version of the comet assay) shows an increase in the levels of BER intermediates. Finally, we found that GSNO exposure is associated with an increase in methylation-induced cytotoxicity. Taken together, these studies support a model wherein GSNO increases BER initiation while processing of AP sites is decreased, leading to a toxic increase in BER intermediates. This model is also supported by additional studies performed in our laboratory showing that inflammation in vivo leads to increased large-scale sequence rearrangements. Taken together, this work provides new evidence that inflammatory chemicals can drive cytotoxicity and mutagenesis via BER imbalance.


Asunto(s)
Aductos de ADN/metabolismo , Reparación del ADN/efectos de los fármacos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Animales , Células Cultivadas , Daño del ADN , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Ratones , Nitrosación , Transporte de Proteínas , S-Nitrosoglutatión/química
13.
J Biol Chem ; 293(29): 11459-11469, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29794029

RESUMEN

Active matrix metalloproteases (MMPs) play a significant role in the pathogenesis of many diseases including osteoarthritis (OA), which involves progressive proteolytic degradation of cartilage. Clinical success of OA interventions that target MMPs has been limited by a lack of information about the presence and activity of specific disease-related proteases. We therefore developed a chemoproteomics approach based on MS to characterize the release and activity of MMPs in an in vitro model of the early inflammatory phase of posttraumatic OA (PTOA). We designed and synthesized chemical activity-based probes (ABPs) to identify active MMPs in bovine cartilage explants cultured for 30 days with the proinflammatory cytokine, interleukin-1α. Using these probes in an activity-based protein profiling-multidimensional identification technology (ABPP-MudPIT) approach, we identified active MMP-1, -2, -3, -7, -9, -12, and -13 in the medium after 10 days of culture, the time at which irreversible proteolysis of the collagen network in the explant was detected using proteolytic activation of FRET-quenched MMP substrates. Total MMP levels were quantified by shotgun proteomics, which, taken with ABPP-MudPIT data, indicated the presence of predominantly inactive MMPs in the culture medium. The selectivity of the ABPP-MudPIT approach was further validated by detection of specific endogenous MMPs activated de novo with 4-aminophenylmurcuric acetate. The utility of the new ABPP-MudPIT approach for detecting molecular biomarkers of PTOA disease initiation and potential targets for therapeutics motivates possible application in other diseases involving MMP activity.


Asunto(s)
Cartílago Articular/patología , Metaloproteinasas de la Matriz/análisis , Osteoartritis/patología , Animales , Cartílago Articular/metabolismo , Bovinos , Activación Enzimática , Interleucina-1alfa/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Osteoartritis/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Técnicas de Cultivo de Tejidos
14.
Sci Rep ; 8(1): 4530, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540740

RESUMEN

Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS "physiome-on-a-chip" approaches in drug discovery.


Asunto(s)
Técnicas de Cocultivo/métodos , Diclofenaco/farmacocinética , Dispositivos Laboratorio en un Chip , Hígado/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Humanos , Procedimientos Analíticos en Microchip , Modelos Biológicos , Fenotipo , Ratas
15.
PLoS Negl Trop Dis ; 12(1): e0006217, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364889

RESUMEN

Dengue virus (DENV) is the most prevalent arbovirus leading to an estimated 100 million symptomatic dengue infections every year. DENV can cause a spectrum of clinical manifestations, ranging from mild dengue fever (DF) to more life threatening forms such as dengue hemorrhagic fever (DHF). The clinical symptoms of DHF become evident typically at the critical phase of infection (5-7 days after onset of fever), yet the mechanisms that trigger transition from DF to DHF are not well understood. We performed a mass spectrometry-based metabolomic profiling of sera from adult DF and DHF patients at the critical and recovery phases of infection. There were 29 differentially expressed metabolites identified between DF and DHF at the critical phase. These include bile acids, purines, acylcarnitines, phospholipids, and amino acids. Bile acids were observed up to 5 fold higher levels among DHF compared to DF patients and were significantly correlated to the higher levels of aspartate transaminase (AST) and alanine transaminase (ALT), suggestive of liver injury among DHF. Uric acid, the most abundant antioxidant in the blood, was observed to be 1.5 fold lower among DHF compared to DF patients. This could result in decreased capacity of endogenous antioxidant defense and elevated oxidative stress among DHF patients. In the recovery phase, the levels of eight metabolites were still significantly higher or lower among DHF patients, including chenodeoxyglycocholic acid, one of the bile acids observed at the critical phase. This indicates potential prolonged adverse impact on the liver due to DENV infection in DHF patients. Our study identified altered metabolic pathways linked to DHF in the critical and recovery phases of dengue infection and provided insights into the different host and DENV interactions between DF and DHF. The results advance our understanding on the mechanisms of DHF pathogenesis, alluding to possible novel therapeutic targets to dengue management.


Asunto(s)
Metaboloma , Suero/química , Dengue Grave/patología , Adulto , Humanos , Espectrometría de Masas
16.
Anal Chem ; 90(3): 1967-1975, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29271637

RESUMEN

S-Nitrosothiols (RSNOs) constitute a circulating endogenous reservoir of nitric oxide and have important biological activities. In this study, an online coupling of solid-phase derivatization (SPD) with liquid chromatography-mass spectrometry (LC-MS) was developed and applied in the analysis of low-molecular-mass RSNOs. A derivatizing-reagent-modified polymer monolithic column was prepared and adapted for online SPD-LC-MS. Analytes from the LC autosampler flowed through the monolithic column for derivatization and then directly into the LC-MS for analysis. This integration of the online derivatization, LC separation, and MS detection facilitated system automation, allowing rapid, laborsaving, and sensitive detection of RSNOs. S-Nitrosoglutathione (GSNO) was quantified using this automated online method with good linearity (R2 = 0.9994); the limit of detection was 0.015 nM. The online SPD-LC-MS method has been used to determine GSNO levels in mouse samples, 138 ± 13.2 nM of endogenous GSNO was detected in mouse plasma. Besides, the GSNO concentrations in liver (64.8 ± 11.3 pmol/mg protein), kidney (47.2 ± 6.1 pmol/mg protein), heart (8.9 ± 1.8 pmol/mg protein), muscle (1.9 ± 0.3 pmol/mg protein), hippocampus (5.3 ± 0.9 pmol/mg protein), striatum (6.7 ± 0.6 pmol/mg protein), cerebellum (31.4 ± 6.5 pmol/mg protein), and cortex (47.9 ± 4.6 pmol/mg protein) were also successfully quantified. When the derivatization was performed within 8 min, followed by LC-MS detection, samples could be rapidly analyzed compared with the offline manual method. Other low-molecular-mass RSNOs, such as S-nitrosocysteine and S-nitrosocysteinylglycine, were captured by rapid precursor-ion scanning, showing that the proposed method is a potentially powerful tool for capture, identification, and quantification of RSNOs in biological samples.


Asunto(s)
Cromatografía Líquida de Alta Presión/instrumentación , Espectrometría de Masas/instrumentación , S-Nitrosoglutatión/sangre , S-Nitrosotioles/aislamiento & purificación , Extracción en Fase Sólida/instrumentación , Animales , Cromatografía Líquida de Alta Presión/economía , Diseño de Equipo , Femenino , Límite de Detección , Espectrometría de Masas/economía , Ratones Endogámicos C57BL , Peso Molecular , Extracción en Fase Sólida/economía , Factores de Tiempo
17.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28468882

RESUMEN

Dengue is an acute febrile illness caused by dengue virus (DENV) and a major cause of morbidity and mortality in tropical and subtropical regions of the world. The lack of an appropriate small-animal model of dengue infection has greatly hindered the study of dengue pathogenesis and the development of therapeutics. In this study, we conducted mass spectrometry-based serum metabolic profiling from a model using humanized mice (humice) with DENV serotype 2 infection at 0, 3, 7, 14, and 28 days postinfection (dpi). Forty-eight differential metabolites were identified, including fatty acids, purines and pyrimidines, acylcarnitines, acylglycines, phospholipids, sphingolipids, amino acids and derivatives, free fatty acids, and bile acid. These metabolites showed a reversible-change trend-most were significantly perturbed at 3 or 7 dpi and returned to control levels at 14 or 28 dpi, indicating that the metabolites might serve as prognostic markers of the disease in humice. The major perturbed metabolic pathways included purine and pyrimidine metabolism, fatty acid ß-oxidation, phospholipid catabolism, arachidonic acid and linoleic acid metabolism, sphingolipid metabolism, tryptophan metabolism, phenylalanine metabolism, lysine biosynthesis and degradation, and bile acid biosynthesis. Most of these disturbed pathways are similar to our previous metabolomics findings in a longitudinal cohort of adult human dengue patients across different infection stages. Our analyses revealed the commonalities of host responses to DENV infection between humice and humans and suggested that humice could be a useful small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics.IMPORTANCE Dengue virus is the most widespread arbovirus, causing an estimated 390 million dengue infections worldwide every year. There is currently no effective treatment for the disease, and the lack of an appropriate small-animal model of dengue infection has greatly increased the challenges in the study of dengue pathogenesis and the development of therapeutics. Metabolomics provides global views of small-molecule metabolites and is a useful tool for finding metabolic pathways related to disease processes. Here, we conducted a serum metabolomics study on a model using humanized mice with dengue infection that had significant levels of human platelets, monocytes/macrophages, and hepatocytes. Forty-eight differential metabolites were identified, and the underlying perturbed metabolic pathways are quite similar to the pathways found to be altered in dengue patients in previous metabolomics studies, indicating that humanized mice could be a highly relevant small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics.


Asunto(s)
Dengue/patología , Metaboloma , Suero/química , Animales , Modelos Animales de Enfermedad , Espectrometría de Masas , Metabolómica , Ratones , Ratones SCID , Factores de Tiempo
18.
Drug Metab Dispos ; 45(7): 855-866, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28450578

RESUMEN

In vitro hepatocyte culture systems have inherent limitations in capturing known human drug toxicities that arise from complex immune responses. Therefore, we established and characterized a liver immunocompetent coculture model and evaluated diclofenac (DCF) metabolic profiles, in vitro-in vivo clearance correlations, toxicological responses, and acute phase responses using liquid chromatography-tandem mass spectrometry. DCF biotransformation was assessed after 48 hours of culture, and the major phase I and II metabolites were similar to the in vivo DCF metabolism profile in humans. Further characterization of secreted bile acids in the medium revealed that a glycine-conjugated bile acid was a sensitive marker of dose-dependent toxicity in this three-dimensional liver microphysiological system. Protein markers were significantly elevated in the culture medium at high micromolar doses of DCF, which were also observed previously for acute drug-induced toxicity in humans. In this immunocompetent model, lipopolysaccharide treatment evoked an inflammatory response that resulted in a marked increase in the overall number of acute phase proteins. Kupffer cell-mediated cytokine release recapitulated an in vivo proinflammatory response exemplified by a cohort of 11 cytokines that were differentially regulated after lipopolysaccharide induction, including interleukin (IL)-1ß, IL-1Ra, IL-6, IL-8, IP-10, tumor necrosis factor-α, RANTES (regulated on activation normal T cell expressed and secreted), granulocyte colony-stimulating factor, macrophage colony-stimulating factor, macrophage inflammatory protein-1ß, and IL-5. In summary, our findings indicate that three-dimensional liver microphysiological systems may serve as preclinical investigational platforms from the perspective of the discovery of a set of clinically relevant biomarkers including potential reactive metabolites, endogenous bile acids, excreted proteins, and cytokines to predict early drug-induced liver toxicity in humans.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Antiinflamatorios no Esteroideos , Citocinas/inmunología , Diclofenaco , Hígado/efectos de los fármacos , Modelos Biológicos , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/toxicidad , Biotransformación , Técnicas de Cocultivo , Diclofenaco/farmacocinética , Diclofenaco/toxicidad , Relación Dosis-Respuesta a Droga , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Inflamación , Macrófagos del Hígado/citología , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/metabolismo , Lipopolisacáridos/toxicidad , Hígado/inmunología , Hígado/metabolismo , Unión Proteica , Proteómica
19.
Nat Microbiol ; 1: 16164, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27642668

RESUMEN

Vaccination has achieved remarkable successes in the control of childhood viral diseases. To control emerging infections, however, vaccines will need to be delivered to older individuals who, unlike infants, probably have had prior infection or vaccination with related viruses and thus have cross-reactive antibodies against the vaccines. Whether and how these cross-reactive antibodies impact live attenuated vaccination efficacy is unclear. Using an open-label randomized trial design, we show that subjects with a specific range of cross-reactive antibody titres from a prior inactivated Japanese encephalitis vaccination enhanced yellow fever (YF) immunogenicity upon YF vaccination. Enhancing titres of cross-reactive antibodies prolonged YF vaccine viraemia, provoked greater pro-inflammatory responses, and induced adhesion molecules intrinsic to the activating Fc-receptor signalling pathway, namely immune semaphorins, facilitating immune cell interactions and trafficking. Our findings clinically demonstrate antibody-enhanced infection and suggest that vaccine efficacy could be improved by exploiting cross-reactive antibodies.

20.
Nat Biotechnol ; 34(9): 987-92, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27376584

RESUMEN

Expansion microscopy (ExM) enables imaging of preserved specimens with nanoscale precision on diffraction-limited instead of specialized super-resolution microscopes. ExM works by physically separating fluorescent probes after anchoring them to a swellable gel. The first ExM method did not result in the retention of native proteins in the gel and relied on custom-made reagents that are not widely available. Here we describe protein retention ExM (proExM), a variant of ExM in which proteins are anchored to the swellable gel, allowing the use of conventional fluorescently labeled antibodies and streptavidin, and fluorescent proteins. We validated and demonstrated the utility of proExM for multicolor super-resolution (∼70 nm) imaging of cells and mammalian tissues on conventional microscopes.


Asunto(s)
Anticuerpos Monoclonales , Encéfalo/citología , Encéfalo/metabolismo , Aumento de la Imagen/métodos , Proteínas Luminiscentes , Microscopía Fluorescente/métodos , Animales , Células HEK293 , Células HeLa , Humanos , Macaca mulatta , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Coloración y Etiquetado/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA