Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Proteomics ; : e2300607, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38783781

RESUMEN

In this study, we sought to compare protein concentrations obtained from a high-throughput proteomics platform (Olink) on samples collected using capillary blood self-collection (with the Tasso+ device) versus standard venipuncture (control). Blood collection was performed on 20 volunteers, including one sample obtained via venipuncture and two via capillary blood using the Tasso+ device. Tasso+ samples were stored at 2°C-8°C for 24-hs (Tasso-24) or 48-h (Tasso-48) prior to processing to simulate shipping times from a study participant's home. Proteomics were analyzed using Olink (384 Inflammatory Panel). Tasso+ blood collection was successful in 37/40 attempts. Of 230 proteins included in our analysis, Pearson correlations (r) and mean coefficient of variation (CV) between Tasso-24 or Tasso-48 versus venipuncture were variable. In the Tasso-24 analysis, 34 proteins (14.8%) had both a correlation r > 0.5 and CV < 0.20. In the Tasso-48 analysis, 68 proteins (29.6%) had a correlation r > 0.5 and CV < 0.20. Combining the Tasso-24 and Tasso-48 analyses, 26 (11.3%) proteins met these thresholds. We concluded that protein concentrations from Tasso+ samples processed 24-48 h after collection demonstrated wide technical variability and variable correlation with a venipuncture gold-standard. Use of home capillary blood self-collection for large-scale proteomics should be limited to select proteins with good agreement with venipuncture.

2.
Cell Rep Med ; 5(5): 101548, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703763

RESUMEN

While weight gain is associated with a host of chronic illnesses, efforts in obesity have relied on single "snapshots" of body mass index (BMI) to guide genetic and molecular discovery. Here, we study >2,000 young adults with metabolomics and proteomics to identify a metabolic liability to weight gain in early adulthood. Using longitudinal regression and penalized regression, we identify a metabolic signature for weight liability, associated with a 2.6% (2.0%-3.2%, p = 7.5 × 10-19) gain in BMI over ≈20 years per SD higher score, after comprehensive adjustment. Identified molecules specified mechanisms of weight gain, including hunger and appetite regulation, energy expenditure, gut microbial metabolism, and host interaction with external exposure. Integration of longitudinal and concurrent measures in regression with Mendelian randomization highlights the complexity of metabolic regulation of weight gain, suggesting caution in interpretation of epidemiologic or genetic effect estimates traditionally used in metabolic research.


Asunto(s)
Índice de Masa Corporal , Aumento de Peso , Humanos , Masculino , Femenino , Adulto , Obesidad/metabolismo , Obesidad/genética , Adulto Joven , Metabolómica , Metabolismo Energético , Proteómica/métodos , Microbioma Gastrointestinal , Metaboloma
3.
Circ Genom Precis Med ; 17(1): e004192, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38323454

RESUMEN

BACKGROUND: The circulating proteome may encode early pathways of diabetes susceptibility in young adults for surveillance and intervention. Here, we define proteomic correlates of tissue phenotypes and diabetes in young adults. METHODS: We used penalized models and principal components analysis to generate parsimonious proteomic signatures of diabetes susceptibility based on phenotypes and on diabetes diagnosis across 184 proteins in >2000 young adults in the CARDIA (Coronary Artery Risk Development in Young Adults study; mean age, 32 years; 44% women; 43% Black; mean body mass index, 25.6±4.9 kg/m2), with validation against diabetes in >1800 individuals in the FHS (Framingham Heart Study) and WHI (Women's Health Initiative). RESULTS: In 184 proteins in >2000 young adults in CARDIA, we identified 2 proteotypes of diabetes susceptibility-a proinflammatory fat proteotype (visceral fat, liver fat, inflammatory biomarkers) and a muscularity proteotype (muscle mass), linked to diabetes in CARDIA and WHI/FHS. These proteotypes specified broad mechanisms of early diabetes pathogenesis, including transorgan communication, hepatic and skeletal muscle stress responses, vascular inflammation and hemostasis, fibrosis, and renal injury. Using human adipose tissue single cell/nuclear RNA-seq, we demonstrate expression at transcriptional level for implicated proteins across adipocytes and nonadipocyte cell types (eg, fibroadipogenic precursors, immune and vascular cells). Using functional assays in human adipose tissue, we demonstrate the association of expression of genes encoding these implicated proteins with adipose tissue metabolism, inflammation, and insulin resistance. CONCLUSIONS: A multifaceted discovery effort uniting proteomics, underlying clinical susceptibility phenotypes, and tissue expression patterns may uncover potentially novel functional biomarkers of early diabetes susceptibility in young adults for future mechanistic evaluation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteómica , Humanos , Femenino , Adulto Joven , Adulto , Masculino , Tejido Adiposo , Inflamación , Biomarcadores/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 44(4): 969-975, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385288

RESUMEN

BACKGROUND: Preeclampsia is a hypertensive disorder of pregnancy characterized by widespread vascular inflammation. It occurs frequently in pregnancy, often without known risk factors, and has high rates of maternal and fetal morbidity and mortality. Identification of biomarkers that predict preeclampsia and its cardiovascular sequelae before clinical onset, or even before pregnancy, is a critical unmet need for the prevention of adverse pregnancy outcomes. METHODS: We explored differences in cardiovascular proteomics (Olink Explore 384) in 256 diverse pregnant persons across 2 centers (26% Hispanic, 21% Black). RESULTS: We identified significant differences in plasma abundance of markers associated with angiogenesis, blood pressure, cell adhesion, inflammation, and metabolism between individuals delivering with preeclampsia and controls, some of which have not been widely described previously and are not represented in the preeclampsia placental transcriptome. While we observed a broadly similar pattern in early (<34 weeks) versus late (≥34 weeks) preeclampsia, several proteins related to hemodynamic stress, hemostasis, and immune response appeared to be more highly dysregulated in early preeclampsia relative to late preeclampsia. CONCLUSIONS: These results demonstrate the value of performing targeted proteomics using a panel of cardiovascular biomarkers to identify biomarkers relevant to preeclampsia pathophysiology and highlight the need for larger multiomic studies to define modifiable pathways of surveillance and intervention upstream to preeclampsia diagnosis.


Asunto(s)
Enfermedades Cardiovasculares , Preeclampsia , Embarazo , Femenino , Humanos , Preeclampsia/diagnóstico , Placenta , Resultado del Embarazo , Biomarcadores , Inflamación/complicaciones , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/complicaciones , Factor de Crecimiento Placentario
5.
medRxiv ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38352394

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) prevalence is increasing in parallel with an obesity pandemic, calling for novel strategies for prevention and treatment. We defined a circulating proteome of human MASLD across ≈7000 proteins in ≈5000 individuals from diverse, at-risk populations across the metabolic health spectrum, demonstrating reproducible diagnostic performance and specifying both known and novel metabolic pathways relevant to MASLD (central carbon and amino acid metabolism, hepatocyte regeneration, inflammation, fibrosis, insulin sensitivity). A parsimonious proteomic signature of MASLD was associated with a protection from MASLD and its related multi-system metabolic consequences in >26000 free-living individuals, with an additive effect to polygenic risk. The MASLD proteome was encoded by genes that demonstrated transcriptional enrichment in liver, with spatial transcriptional activity in areas of steatosis in human liver biopsy and dynamicity for select targets in human liver across stages of steatosis. We replicated several top relations from proteomics and spatial tissue transcriptomics in a humanized "liver-on-a-chip" model of MASLD, highlighting the power of a full translational approach to discovery in MASLD. Collectively, these results underscore utility of blood-based proteomics as a dynamic "liquid biopsy" of human liver relevant to clinical biomarker and mechanistic applications.

6.
J Thromb Thrombolysis ; 57(2): 204-211, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38296868

RESUMEN

Biomarkers are widely used for the diagnosis and monitoring of cardiovascular disease. However, markers for coronary high-risk plaques have not been identified. The aim of this study was to identify proteins specific to coronary high-risk plaques. Fifty-one patients (71.2 ± 11.1 years, male: 66.7%) who underwent intracoronary optical coherence tomography imaging and provided blood specimens for proteomic analysis were prospectively enrolled. A total of 1470 plasma proteins were analyzed per patient using the Olink® Explore 1536 Reagent Kit. In patients with thin-cap fibroatheroma, the protein expression of Calretinin (CALB2), Corticoliberin (CRH) and Alkaline phosphatase, placental type (ALPP) were significantly increased, while the expression of Neuroplastin (NPTN), Folate receptor gamma (FOLR3) and Serpin A12 (SERPINA12) were significantly decreased. In patients with macrophage infiltration, the protein expressions of Fatty acid-binding protein, intestinal (FABP2), and Fibroblast growth factor 21 (FGF21) were significantly decreased. In patients with lipid-rich plaques, the protein expression of Interleukin-17 C (IL17C) was significantly increased, while the expression of Fc receptor-like protein 3 (FCRL3) was significantly decreased. These proteins might be useful markers in identifying patients with coronary high-risk plaques. Clinical Trial Registration: https://www.umin.ac.jp/ctr/ , UMIN000041692.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Serpinas , Embarazo , Humanos , Masculino , Femenino , Placa Aterosclerótica/diagnóstico por imagen , Angiografía Coronaria , Tomografía de Coherencia Óptica/métodos , Proteómica , Vasos Coronarios , Placenta
7.
J Am Heart Assoc ; 12(21): e029980, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37889181

RESUMEN

BACKGROUND: While exercise impairments are central to symptoms and diagnosis of heart failure with preserved ejection fraction (HFpEF), prior studies of HFpEF biomarkers have mostly focused on resting phenotypes. We combined precise exercise phenotypes with cardiovascular proteomics to identify protein signatures of HFpEF exercise responses and new potential therapeutic targets. METHODS AND RESULTS: We analyzed 277 proteins (Olink) in 151 individuals (N=103 HFpEF, 48 controls; 62±11 years; 56% women) with cardiopulmonary exercise testing with invasive monitoring. Using ridge regression adjusted for age/sex, we defined proteomic signatures of 5 physiological variables involved in HFpEF: peak oxygen uptake, peak cardiac output, pulmonary capillary wedge pressure/cardiac output slope, peak pulmonary vascular resistance, and peak peripheral O2 extraction. Multiprotein signatures of each of the exercise phenotypes captured a significant proportion of variance in respective exercise phenotypes. Interrogating the importance (ridge coefficient magnitude) of specific proteins in each signature highlighted proteins with putative links to HFpEF pathophysiology (eg, inflammatory, profibrotic proteins), and novel proteins linked to distinct physiologies (eg, proteins involved in multiorgan [kidney, liver, muscle, adipose] health) were implicated in impaired O2 extraction. In a separate sample (N=522, 261 HF events), proteomic signatures of peak oxygen uptake and pulmonary capillary wedge pressure/cardiac output slope were associated with incident HFpEF (odds ratios, 0.67 [95% CI, 0.50-0.90] and 1.43 [95% CI, 1.11-1.85], respectively) with adjustment for clinical factors and B-type natriuretic peptides. CONCLUSIONS: The cardiovascular proteome is associated with precision exercise phenotypes in HFpEF, suggesting novel mechanistic targets and potential methods for risk stratification to prevent HFpEF early in its pathogenesis.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Femenino , Masculino , Volumen Sistólico/fisiología , Proyectos Piloto , Proteómica , Fenotipo , Oxígeno/metabolismo , Prueba de Esfuerzo/métodos , Tolerancia al Ejercicio/fisiología
8.
Obesity (Silver Spring) ; 31(1): 150-158, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334095

RESUMEN

OBJECTIVE: Weight regain occurs after medical weight loss via mechanisms of post-weight-loss "metabolic adaptation." The relationship of inflammatory proteins with weight loss/regain was studied to determine a role for inflammation in metabolic adaptation. METHODS: Seventy-four proteins central to inflammation and immune regulation (Olink) were analyzed in plasma from up to 490 participants in a trial of medical weight-loss maintenance. Cross-sectional and longitudinal associations of proteins with weight were measured using linear and mixed effects regression models and t testing, with replication in the Framingham Heart Study. RESULTS: Broad changes in the inflammatory proteome were observed among the study cohort (60% women, 35% African American) with initial weight loss of ≈8 kg from a median 94 kg at study entry (33/74 proteins; 7 increased; 26 decreased), many of which tracked with weight regain of median ≈2 kg over the next 30 months. Ten proteins were associated with different rates of weight regain, some specifying pathways of chemotaxis and innate immune responses. Several of the observed protein associations were also linked to prevalent obesity in the Framingham Heart Study. CONCLUSIONS: Broad changes in the inflammatory proteome track with changes in weight and may identify specific pathways that modify patterns of weight regain.


Asunto(s)
Proteoma , Aumento de Peso , Femenino , Humanos , Masculino , Estudios Transversales , Inflamación , Obesidad/metabolismo , Aumento de Peso/fisiología , Pérdida de Peso/fisiología
9.
Sci Rep ; 12(1): 16220, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171215

RESUMEN

MicroRNAs (miRNAs) are a family of noncoding, functional RNAs. With recent developments in molecular biology, miRNA detection has attracted significant interest, as hundreds of miRNAs and their expression levels have shown to be linked to various diseases such as infections, cardiovascular disorders and cancers. A powerful and high throughput tool for nucleic acid detection is the DNA microarray technology. However, conventional methods do not meet the demands in sensitivity and specificity, presenting significant challenges for the adaptation of miRNA detection for diagnostic applications. In this study, we developed a highly sensitive and multiplexed digital microarray using plasmonic gold nanorods as labels. For proof of concept studies, we conducted experiments with two miRNAs, miRNA-451a (miR-451) and miRNA-223-3p (miR-223). We demonstrated improvements in sensitivity in comparison to traditional end-point assays that employ capture on solid phase support, by implementing real-time tracking of the target molecules on the sensor surface. Particle tracking overcomes the sensitivity limitations for detection of low-abundance biomarkers in the presence of low-affinity but high-abundance background molecules, where endpoint assays fall short. The absolute lowest measured concentration was 100 aM. The measured detection limit being well above the blank samples, we performed theoretical calculations for an extrapolated limit of detection (LOD). The dynamic tracking improved the extrapolated LODs from femtomolar range to [Formula: see text] 10 attomolar (less than 1300 copies in 0.2 ml of sample) for both miRNAs and the total incubation time was decreased from 5 h to 35 min.


Asunto(s)
MicroARNs , Neoplasias , Oro , Humanos , MicroARNs/genética
11.
J Surg Res ; 257: 203-212, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32858321

RESUMEN

BACKGROUND: Hibernating American black bears have significantly different clotting parameters than their summer active counterparts, affording them protection against venous thromboembolism during prolonged periods of immobility. We sought to evaluate if significant differences exist between the expression of microRNAs in the plasma of hibernating black bears compared with their summer active counterparts, potentially contributing to differences in hemostasis during hibernation. MATERIALS AND METHODS: MicroRNA sequencing was assessed in plasma from 21 American black bears in summer active (n = 11) and hibernating states (n = 10), and microRNA signatures during hibernating and active state were established using both bear and human genome. MicroRNA targets were predicted using messenger RNA (mRNA) transcripts from black bear kidney cells. In vitro studies were performed to confirm the relationship between identified microRNAs and mRNA expression, using artificial microRNA and human liver cells. RESULTS: Using the bear genome, we identified 15 microRNAs differentially expressed in the plasma of hibernating black bears. Of these microRNAs, three were significantly downregulated (miR-141-3p, miR-200a-3p, and miR-200c-3p), were predicted to target SERPINC1, the gene for antithrombin, and demonstrated regulatory control of the gene mRNA expression in cell studies. CONCLUSIONS: Our findings suggest that the hibernating black bears' ability to maintain hemostasis and achieve protection from venous thromboembolism during prolonged periods of immobility may be due to changes in microRNA signatures and possible upregulation of antithrombin expression.


Asunto(s)
Hemostasis/genética , Hibernación/genética , MicroARNs/metabolismo , Ursidae/genética , Tromboembolia Venosa/genética , Animales , Antitrombina III/genética , Línea Celular Tumoral , Femenino , Silenciador del Gen , Hepatocitos , Humanos , Masculino , MicroARNs/sangre , Estaciones del Año , Regulación hacia Arriba , Ursidae/sangre , Tromboembolia Venosa/prevención & control
12.
Arterioscler Thromb Vasc Biol ; 41(2): 854-864, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33297754

RESUMEN

OBJECTIVE: Adiposity is associated with oxidative stress, inflammation, and glucose intolerance. Previous data suggest that platelet gene expression is associated with key cardiometabolic phenotypes, including body mass index but stable in healthy individuals over time. However, modulation of gene expression in platelets in response to metabolic shifts (eg, weight reduction) is unknown and may be important to defining mechanism. Approach and Results: Platelet RNA sequencing and aggregation were performed from 21 individuals with massive weight loss (>45 kg) following bariatric surgery. Based on RNA sequencing data, we measured the expression of 67 genes from isolated platelet RNA using high-throughput quantitative reverse transcription quantitative PCR in 1864 FHS (Framingham Heart Study) participants. Many transcripts not previously studied in platelets were differentially expressed with bariatric surgical weight loss, appeared specific to platelets (eg, not differentially expressed in leukocytes), and were enriched for a nonalcoholic fatty liver disease pathway. Platelet aggregation studies did not detect alteration in platelet function after significant weight loss. Linear regression models demonstrated several platelet genes modestly associated with cross-sectional cardiometabolic phenotypes, including body mass index. There were no associations between studied transcripts and incident diabetes or cardiovascular end points. CONCLUSIONS: In summary, while there is no change in platelet aggregation function after significant weight loss, the human platelet experiences a dramatic transcriptional shift that implicates pathways potentially relevant to improved cardiometabolic risk postweight loss (eg, nonalcoholic fatty liver disease). Further studies are needed to determine the mechanistic importance of these observations.


Asunto(s)
Plaquetas/metabolismo , Enfermedades Cardiovasculares/genética , Obesidad/genética , Transcriptoma , Pérdida de Peso/genética , Adulto , Anciano , Cirugía Bariátrica , Factores de Riesgo Cardiometabólico , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Incidencia , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/epidemiología , Obesidad/cirugía , Agregación Plaquetaria , Estudios Prospectivos , RNA-Seq , Medición de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
13.
PLoS One ; 15(8): e0236960, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32813736

RESUMEN

BACKGROUND: Circulating microRNAs may reflect or influence pathological cardiac remodeling and contribute to atrial fibrillation (AF). OBJECTIVE: The purpose of this study was to identify candidate plasma microRNAs that are associated with echocardiographic phenotypes of atrial remodeling, and incident and prevalent AF in a community-based cohort. METHODS: We analyzed left atrial function index (LAFI) of 1788 Framingham Offspring 8 participants. We quantified expression of 339 plasma microRNAs. We examined associations between microRNA levels with LAFI and prevalent and incident AF. We constructed pathway analysis of microRNAs' predicted gene targets to identify molecular processes involved in adverse atrial remodeling in AF. RESULTS: The mean age of the participants was 66 ± 9 years, and 54% were women. Five percent of participants had prevalent AF at the initial examination and 9% (n = 157) developed AF over a median 8.6 years of follow-up (IQR 8.1-9.2 years). Plasma microRNAs were associated with LAFI (N = 73, p<0.0001). Six of these plasma microRNAs were significantly associated with incident AF, including 4 also associated with prevalent AF (microRNAs 106b, 26a-5p, 484, 20a-5p). These microRNAs are predicted to regulate genes involved in cardiac hypertrophy, inflammation, and myocardial fibrosis. CONCLUSIONS: Circulating microRNAs 106b, 26a-5p, 484, 20a-5p are associated with atrial remodeling and AF.


Asunto(s)
Fibrilación Atrial/sangre , Fibrilación Atrial/genética , Remodelación Atrial/genética , MicroARNs/sangre , MicroARNs/genética , Anciano , Fibrilación Atrial/diagnóstico por imagen , Función del Atrio Izquierdo/genética , Función del Atrio Izquierdo/fisiología , Remodelación Atrial/fisiología , Biomarcadores/sangre , Estudios de Cohortes , Ecocardiografía , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad
14.
Epigenetics ; 15(1-2): 183-198, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31282290

RESUMEN

DNA methylation (DNAm) and microRNAs (miRNAs) have been implicated in a wide-range of human diseases. While often studied in isolation, DNAm and miRNAs are not independent. We analyzed associations of expression of 283 miRNAs with DNAm at >400K CpG sites in whole blood obtained from 3565 individuals and identified 227 CpGs at which differential methylation was associated with the expression of 40 nearby miRNAs (cis-miR-eQTMs) at FDR<0.01, including 91 independent CpG sites at r2 < 0.2. cis-miR-eQTMs were enriched for CpGs in promoter and polycomb-repressed state regions, and 60% were inversely associated with miRNA expression. Bidirectional Mendelian randomization (MR) analysis further identified 58 cis-miR-eQTMCpG-miRNA pairs where DNAm changes appeared to drive miRNA expression changes and opposite directional effects were unlikely. Integration of genetic variants in joint analyses revealed an average partial between cis-miR-eQTM CpGs and miRNAs of 2% after conditioning on site-specific genetic variation, suggesting that DNAm is an important epigenetic regulator of miRNA expression. Finally, two-step MR analysis was performed to identify putatively causal CpGs driving miRNA expression in relation to human complex traits. We found that an imprinted region on 14q32 that was previously identified in relation to age at menarche is enriched with cis-miR-eQTMs. Nine CpGs and three miRNAs at this locus tested causal for age at menarche, reflecting novel epigenetic-driven molecular pathways underlying this complex trait. Our study sheds light on the joint genetic and epigenetic regulation of miRNA expression and provides insights into the relations of miRNAs to their targets and to complex phenotypes.


Asunto(s)
Metilación de ADN , Epigenoma , MicroARNs/genética , Herencia Multifactorial , Cromosomas Humanos Par 14/genética , Islas de CpG , Epigenómica/métodos , Estudio de Asociación del Genoma Completo/métodos , Impresión Genómica , Humanos , Menarquia/genética , Análisis de la Aleatorización Mendeliana/métodos , MicroARNs/metabolismo , Sitios de Carácter Cuantitativo , Transcriptoma
15.
AIDS ; 33(15): 2351-2361, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31764100

RESUMEN

OBJECTIVE: Individuals with HIV suffer a higher burden of cardiovascular diseases. Traditional cardiovascular risk scores consistently underestimate cardiovascular risk in this population. Subsets of microRNAs (miRNAs) are differentially expressed among individuals with cardiovascular disease and individuals infected with HIV. However, no study has clarified whether specific miRNAs may be biomarkers for cardiovascular disease in individuals with HIV. DESIGN/METHODS: We compared the miRNA expression profiles of 34 HIV-positive individuals who had experienced clinically adjudicated type I myocardial infarctions (MI) with the profiles of 76 HIV-positive controls matched by traditional cardiovascular risk factors and HIV-specific measures. Using the elastic net algorithm, we selected miRNAs most strongly associated with incident MI and then used conditional Cox proportional hazards regression and cross-validation to evaluate miRNAs and their association with incident MI. We evaluated whether miRNA markers would improve risk classification relative to the Framingham Risk Score. RESULTS: Higher miR-125a-5p and miR-139-5p expression levels were each associated with increased risk of developing MI after adjustment for Framingham Risk Score and HIV-related factors (hazard ratio 2.43, P = 0.018; hazard ratio 2.13, P = 0.048, respectively). Compared with the Framingham Risk Score alone, adding expression levels of miR-125a-5p or miR-139-5p resulted in an integrated discrimination improvement of 10.1 or 5.8%, respectively. CONCLUSION: MiR-125a-5p and miR-139-5p, transcripts known to be differentially expressed in HIV-positive individuals, may serve as unique biomarkers predictive of cardiovascular disease in these patients and may help clarify processes because of HIV infection that contribute to cardiovascular disorders in this population.


Asunto(s)
Infecciones por VIH/sangre , MicroARNs/sangre , Infarto del Miocardio/sangre , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Medición de Riesgo
16.
J Clin Transl Res ; 5(1): 33-43, 2019 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-31579840

RESUMEN

BACKGROUND: Given high on-treatment mortality in heart failure (HF), identifying molecular pathways that underlie adverse cardiac remodeling may offer novel biomarkers and therapeutic avenues. Circulating extracellular RNAs (ex-RNAs) regulate important biological processes and are emerging as biomarkers of disease, but less is known about their role in the acute setting, particularly in the setting of HF. METHODS: We examined the ex-RNA profiles of 296 acute coronary syndrome (ACS) survivors enrolled in the Transitions, Risks, and Actions in Coronary Events Center for Outcomes Research and Education Cohort. We measured 374 ex-RNAs selected a priori, based on previous findings from a large population study. We employed a two-step, mechanism-driven approach to identify ex-RNAs associated with echocardiographic phenotypes (left ventricular [LV] ejection fraction, LV mass, LV end-diastolic volume, left atrial [LA] dimension, and LA volume index) then tested relations of these ex-RNAs with prevalent HF (N=31, 10.5%). We performed further bioinformatics analysis of microRNA (miRNAs) predicted targets' genes ontology categories and molecular pathways. RESULTS: We identified 44 ex-RNAs associated with at least one echocardiographic phenotype associated with HF. Of these 44 exRNAs, miR-29-3p, miR-584-5p, and miR-1247-5p were also associated with prevalent HF. The three microRNAs were implicated in the regulation p53 and transforming growth factor-ß signaling pathways and predicted to be involved in cardiac fibrosis and cell death; miRNA predicted targets were enriched in gene ontology categories including several involving the extracellular matrix and cellular differentiation. CONCLUSIONS: Among ACS survivors, we observed that miR-29-3p, miR-584-5p, and miR-1247-5p were associated with both echocardiographic markers of cardiac remodeling and prevalent HF. RELEVANCE FOR PATIENTS: miR-29c-3p, miR-584-5p, and miR-1247-5p were associated with echocardiographic phenotypes and prevalent HF and are potential biomarkers for adverse cardiac remodeling in HF.

17.
iScience ; 19: 916-926, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31518900

RESUMEN

The presence of nonhuman RNAs in man has been questioned and it is unclear if food-derived miRNAs cross into the circulation. In a large population study, we found nonhuman miRNAs in plasma by RNA sequencing and validated a small number of pine-pollen miRNAs by RT-qPCR in 2,776 people. The presence of these pine-pollen miRNAs associated with hay fever and not with overt cardiovascular or pulmonary disease. Using in vivo and in vitro models, we found that transmission of pollen-miRNAs into the circulation occurs via pulmonary transfer and this transfer was mediated by platelet-pulmonary vascular cell interactions and platelet pollen-DNA uptake. These data demonstrate that pollen-derived plant miRNAs can be horizontally transferred into the circulation via the pulmonary system in humans. Although these data suggest mechanistic plausibility for pulmonary-mediated plant-derived miRNA transfer into the human circulation, our large observational cohort data do not implicate major disease or risk factor association.

18.
Front Cardiovasc Med ; 6: 115, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31475159

RESUMEN

Introduction: Epicardial adipose tissue (EAT) has been linked to incidence and recurrence of atrial fibrillation (AF), but the underlying mechanisms that mediate this association remain unclear. Circulating microRNAs (miRNAs) contribute to the regulation of gene expression in cardiovascular diseases, including AF. Thus, we sought to test the hypothesis that circulating miRNAs relate to burden of EAT. Methods: We examined the plasma miRNA profiles of 91 participants from the miRhythm study, an ongoing study examining associations between miRNA and AF. We quantified plasma expression of 86 unique miRNAs commonly expressed in cardiomyocytes using quantitative reverse transcriptase polymerase chain reaction (qPCR). From computed tomography, we used validated methods to quantify the EAT area surrounding the left atrium (LA) and indexed it to body surface area (BSA) to calculate indexed LA EAT (iLAEAT). Participants were divided into tertiles of iLAEAT to identify associations with unique miRNAs. We performed logistic regression analyses adjusting for factors associated with AF to examine relations between iLAEAT and miRNA. We performed further bioinformatics analysis of miRNA predicted target genes to identify potential molecular pathways are regulated by the miRNAs. Results: The mean age of the participants was 59 ± 9, 35% were women, and 97% were Caucasian. Participants in the highest tertile of iLAEAT were more likely to have hypertension, heart failure, and thick posterior walls. In regression analyses, we found that miRNAs 155-5p (p < 0.001) and 302a-3p (p < 0.001) were significantly associated with iLAEAT in patients with AF. The predicted targets of the miRNAs identified were implicated in the regulation of cardiac hypertrophy, adipogenesis, interleukin-8 (IL-8), and nerve growth factor (NGF) signaling. Conclusion: miRNA as well as EAT have previously been linked to AF. Our finding that iLAEAT and miRNAs 155-5p and 302a-3p are associated suggest a possible direct link to between these entities in the development and maintenance of AF. Further research is needed to study causal relationships between these biomarkers.

19.
BMC Cancer ; 19(1): 436, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31077182

RESUMEN

BACKGROUND: Breast cancer is the leading cause of cancer related death in women, with metastasis the principle cause of mortality. New non-invasive prognostic markers are needed for the early detection of metastasis, facilitating treatment decision optimisation. MicroRNA (miRNA) are small, non-coding RNAs regulating gene expression and involved in many cellular processes, including metastasis. As biomarkers, circulating miRNAs (in blood) hold great promise for informing diagnosis or monitoring treatment responses. METHODS: Plasma extracted RNA from age matched local Luminal A (n = 4) or metastatic disease (n = 4) were profiled using Next Generation Sequencing. Selected differentially expressed miRNA were validated on a whole blood extracted miRNA cohort [distant metastatic disease (n = 22), local disease (n = 31), healthy controls (n = 21)]. Area Under the Curve (AUC) in Receiver Operating Characteristic (ROC) analyses was performed. RESULTS: Of 4 miRNA targets tested (miR-181a, miR-329, miR-331, miR-195), mir-331 was significantly over-expressed in patients with metastatic disease, compared to patients with local disease (p < 0.001) or healthy controls (p < 0.001). miR-195 was significantly under-expressed in patients with metastatic disease, compared to patients with local disease (p < 0.001) or healthy controls (p = 0.043). In combination, miR-331 and miR-195 produced an AUC of 0.902, distinguishing metastatic from local breast cancer. CONCLUSIONS: We identified and validated two circulating miRNAs differentiating local Luminal A breast cancers from metastatic breast cancers. Further investigation will reveal the molecular role of these miRNAs in metastasis, and determine if they are subtype specific. This work demonstrates the ability of circulating miRNA to identify metastatic disease, and potentially inform diagnosis or treatment effectiveness.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/clasificación , MicroARNs/sangre , Metástasis de la Neoplasia/genética , Regulación hacia Arriba , Adulto , Anciano , Biomarcadores de Tumor/sangre , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Diagnóstico Diferencial , Femenino , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Curva ROC , Análisis de Secuencia de ARN
20.
Arterioscler Thromb Vasc Biol ; 39(1): 107-115, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30580566

RESUMEN

Objective- Mechanisms of early and late improvements in cardiovascular risk after bariatric surgery and applicability to larger, at-risk populations remain unclear. We aimed to identify proteins altered after bariatric surgery and their relations to metabolic syndrome and diabetes mellitus. Approach and Results- We identified 19 proteins altered in 32 nonfasting plasma samples from a study of patients undergoing bariatric surgery who were evaluated preoperatively (visit 1) versus both early (visit 2; ≈3 months) and late (visit 3; ≈12 months) postoperative follow-up using predefined protein panels (Olink). Using in silico methods and publicly available gene expression repositories, we found that genes encoding 8 out of 19 proteins had highest expression in liver relative to other assayed tissues, with the top biological and disease processes, including major obesity-related vascular diseases. Of 19 candidate proteins in the surgical cohort, 6 were previously measured in >3000 FHS (Framingham Heart Study) participants (IGFBP [insulin-like growth factor binding protein]-1, IGFBP-2, P-selectin, CD163, LDL (low-density lipoprotein)-receptor, and PAI [plasminogen activator inhibitor]-1). A higher concentration of IGFBP-2 at baseline was associated with a lower risk of incident metabolic syndrome (odds ratio per log-normal unit, 0.45; 95% CI, 0.32-0.64; P=7.7×10-6) and diabetes mellitus (odds ratio, 0.63; 95% CI, 0.49-0.79; P=0.0001) after multivariable adjustment. Conclusions- Using a directed protein quantification platform (Olink), we identified known and novel proteins altered after surgical weight loss, including IGFBP-2. Future efforts in well-defined obesity intervention settings may further define and validate novel targets for the prevention of vascular disease in obesity.


Asunto(s)
Cirugía Bariátrica , Proteínas Sanguíneas/análisis , Resistencia a la Insulina , Pérdida de Peso , Adulto , Enfermedades Cardiovasculares/prevención & control , Femenino , Humanos , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Masculino , Síndrome Metabólico/prevención & control , Persona de Mediana Edad , Obesidad/sangre , Selectina-P/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA