Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
J Clin Sleep Med ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913342

RESUMEN

STUDY OBJECTIVES: Pediatric obstructive sleep apnea (OSA) is common, however, inclusion of adolescents and especially those of ethnic/racial minorities in research is scarce. We hypothesized that ethnic/racial minority adolescents undergoing polysomnography (PSG) have higher prevalence and more severe OSA compared to those who are non-Hispanic (NH) White. METHODS: Retrospective review of 1,745 adolescents undergoing diagnostic PSG. Demographic characteristics, age, body mass index percentile (BMIp), and PSG parameters were obtained. Descriptive statistics comparing race/ethnicity were analyzed. Linear regression of log-transformed obstructive apnea-hypopnea index (OAHI), and logistic regression of moderate-severe OSA (OAHI ≥ 5 events/h) adjusting for covariates were analyzed. RESULTS: 58.2% adolescents were Hispanic, 24.1% NH-White, 4.3% NH-Asian/Pacific Islander (PI), 4.2% NH-Black/African American (AA), and 6.6% NH-other. Compared to the NH-White group, the Hispanic group had higher OAHI and any level of OSA severity; the Black/AA group had higher moderate-severe and severe OSA, and the NH-Asian group had higher moderate-severe OSA. Multiple linear regression of log-OAHI identified an association with Hispanic ethnicity (ß: 0.25, P-value < .05). Compared to the NH-White group, the Hispanic and the Asian/PI groups were 1.45 (95% CI: 1.10, 1.93) and 1.81 (95% CI: 1.05, 3.10) times more likely to have moderate-severe OSA, respectively, after adjusting for relevant covariates. Stratified analysis by sex identified an association only among males between Hispanic ethnicity (OR: 1.85, 95% CI: 1.27, 2.70) and Asian/PI ethnicity (OR: 2.62, 95% CI: 1.35, 5.11) and moderate-severe OSA, compared to the NH-White group. CONCLUSIONS: Among adolescents undergoing PSG evaluation, we identified OSA racial/ethnic and sex disparities in Hispanic and NH-Asian adolescents. Community level studies with adequate representation of these minority groups are needed to identify factors associated with the reported increased susceptibility.

2.
Cell Commun Signal ; 22(1): 347, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943141

RESUMEN

PIWI-interacting RNA (piRNA) is the most abundant small non-coding RNA in animal cells, typically 26-31 nucleotides in length and it binds with PIWI proteins, a subfamily of Argonaute proteins. Initially discovered in germ cells, piRNA is well known for its role in silencing transposons and maintaining genome integrity. However, piRNA is also present in somatic cells as well as in extracellular vesicles and exosomes. While piRNA has been extensively studied in various diseases, particular cancer, its function in immune diseases remains unclear. In this review, we summarize current research on piRNA in immune diseases. We first introduce the basic characteristics, biogenesis and functions of piRNA. Then, we review the association of piRNA with different types of immune diseases, including autoimmune diseases, immunodeficiency diseases, infectious diseases, and other immune-related diseases. piRNA is considered a promising biomarker for diseases, highlighting the need for further research into its potential mechanisms in disease pathogenesis.


Asunto(s)
Enfermedades del Sistema Inmune , ARN Interferente Pequeño , Humanos , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Animales , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/metabolismo , ARN de Interacción con Piwi
3.
Res Sq ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38746290

RESUMEN

Estimates of post-acute sequelae of SARS-CoV-2 infection (PASC) incidence, also known as Long COVID, have varied across studies and changed over time. We estimated PASC incidence among adult and pediatric populations in three nationwide research networks of electronic health records (EHR) participating in the RECOVER Initiative using different classification algorithms (computable phenotypes). Overall, 7% of children and 8.5%-26.4% of adults developed PASC, depending on computable phenotype used. Excess incidence among SARS-CoV-2 patients was 4% in children and ranged from 4-7% among adults, representing a lower-bound incidence estimation based on two control groups - contemporary COVID-19 negative and historical patients (2019). Temporal patterns were consistent across networks, with peaks associated with introduction of new viral variants. Our findings indicate that preventing and mitigating Long COVID remains a public health priority. Examining temporal patterns and risk factors of PASC incidence informs our understanding of etiology and can improve prevention and management.

4.
PLoS One ; 19(5): e0285635, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713673

RESUMEN

IMPORTANCE: The prevalence, pathophysiology, and long-term outcomes of COVID-19 (post-acute sequelae of SARS-CoV-2 [PASC] or "Long COVID") in children and young adults remain unknown. Studies must address the urgent need to define PASC, its mechanisms, and potential treatment targets in children and young adults. OBSERVATIONS: We describe the protocol for the Pediatric Observational Cohort Study of the NIH's REsearching COVID to Enhance Recovery (RECOVER) Initiative. RECOVER-Pediatrics is an observational meta-cohort study of caregiver-child pairs (birth through 17 years) and young adults (18 through 25 years), recruited from more than 100 sites across the US. This report focuses on two of four cohorts that comprise RECOVER-Pediatrics: 1) a de novo RECOVER prospective cohort of children and young adults with and without previous or current infection; and 2) an extant cohort derived from the Adolescent Brain Cognitive Development (ABCD) study (n = 10,000). The de novo cohort incorporates three tiers of data collection: 1) remote baseline assessments (Tier 1, n = 6000); 2) longitudinal follow-up for up to 4 years (Tier 2, n = 6000); and 3) a subset of participants, primarily the most severely affected by PASC, who will undergo deep phenotyping to explore PASC pathophysiology (Tier 3, n = 600). Youth enrolled in the ABCD study participate in Tier 1. The pediatric protocol was developed as a collaborative partnership of investigators, patients, researchers, clinicians, community partners, and federal partners, intentionally promoting inclusivity and diversity. The protocol is adaptive to facilitate responses to emerging science. CONCLUSIONS AND RELEVANCE: RECOVER-Pediatrics seeks to characterize the clinical course, underlying mechanisms, and long-term effects of PASC from birth through 25 years old. RECOVER-Pediatrics is designed to elucidate the epidemiology, four-year clinical course, and sociodemographic correlates of pediatric PASC. The data and biosamples will allow examination of mechanistic hypotheses and biomarkers, thus providing insights into potential therapeutic interventions. CLINICAL TRIALS.GOV IDENTIFIER: Clinical Trial Registration: http://www.clinicaltrials.gov. Unique identifier: NCT05172011.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/virología , Adolescente , Niño , Preescolar , Femenino , Adulto Joven , Adulto , Masculino , Lactante , SARS-CoV-2/aislamiento & purificación , Recién Nacido , Estudios Prospectivos , Proyectos de Investigación , Estudios de Cohortes , Síndrome Post Agudo de COVID-19
6.
Respir Res ; 25(1): 118, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459594

RESUMEN

BACKGROUND: Vitamin D may help to alleviate asthma exacerbation because of its anti-inflammation effect, but the evidence is inconsistent in childhood asthma. MiRNAs are important mediators in asthma pathogenesis and also excellent non-invasive biomarkers. We hypothesized that circulating miRNAs are associated with asthma exacerbation and modified by vitamin D levels. METHODS: We sequenced baseline serum miRNAs from 461 participants in the Childhood Asthma Management Program (CAMP). Logistic regression was used to associate miRNA expression with asthma exacerbation through interaction analysis first and then stratified by vitamin D insufficient and sufficient groups. Microarray from lymphoblastoid B-cells (LCLs) treated by vitamin D or sham of 43 subjects in CAMP were used for validation in vitro. The function of miRNAs was associated with gene modules by weighted gene co-expression network analysis (WGCNA). RESULTS: We identified eleven miRNAs associated with asthma exacerbation with vitamin D effect modification. Of which, five were significant in vitamin D insufficient group and nine were significant in vitamin D sufficient group. Six miRNAs, including hsa-miR-143-3p, hsa-miR-192-5p, hsa-miR-151a-5p, hsa-miR-24-3p, hsa-miR-22-3p and hsa-miR-451a were significantly associated with gene modules of immune-related functions, implying miRNAs may mediate vitamin D effect on asthma exacerbation through immune pathways. In addition, hsa-miR-143-3p and hsa-miR-451a are potential predictors of childhood asthma exacerbation at different vitamin D levels. CONCLUSIONS: miRNAs are potential mediators of asthma exacerbation and their effects are directly impacted by vitamin D levels.


Asunto(s)
Asma , MicroARN Circulante , MicroARNs , Humanos , MicroARNs/metabolismo , MicroARN Circulante/genética , Perfilación de la Expresión Génica , Asma/diagnóstico , Asma/genética , Vitamina D
7.
J Pers Med ; 14(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38540988

RESUMEN

BACKGROUND: Although inhaled corticosteroids (ICS) are the first-line therapy for patients with persistent asthma, many patients continue to have exacerbations. We developed machine learning models to predict the ICS response in patients with asthma. METHODS: The subjects included asthma patients of European ancestry (n = 1371; 448 children; 916 adults). A genome-wide association study was performed to identify the SNPs associated with ICS response. Using the SNPs identified, two machine learning models were developed to predict ICS response: (1) least absolute shrinkage and selection operator (LASSO) regression and (2) random forest. RESULTS: The LASSO regression model achieved an AUC of 0.71 (95% CI 0.67-0.76; sensitivity: 0.57; specificity: 0.75) in an independent test cohort, and the random forest model achieved an AUC of 0.74 (95% CI 0.70-0.78; sensitivity: 0.70; specificity: 0.68). The genes contributing to the prediction of ICS response included those associated with ICS responses in asthma (TPSAB1, FBXL16), asthma symptoms and severity (ABCA7, CNN2, PTRN3, and BSG/CD147), airway remodeling (ELANE, FSTL3), mucin production (GAL3ST), leukotriene synthesis (GPX4), allergic asthma (ZFPM1, SBNO2), and others. CONCLUSIONS: An accurate risk prediction of ICS response can be obtained using machine learning methods, with the potential to inform personalized treatment decisions. Further studies are needed to examine if the integration of richer phenotype data could improve risk prediction.

8.
J Allergy Clin Immunol ; 153(3): 695-704, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38056635

RESUMEN

BACKGROUND: Piwi-interacting RNAs (piRNAs), comprising the largest noncoding RNA group, regulate transcriptional processes. Whether piRNAs are associated with type 2 (T2)-high asthma is unknown. OBJECTIVE: We sought to investigate the association between piRNAs and T2-high asthma in childhood asthma. METHODS: We sequenced plasma samples from 462 subjects in the Childhood Asthma Management Program (CAMP) as the discovery cohort and 1165 subjects in the Genetics of Asthma in Costa Rica Study (GACRS) as a replication cohort. Sequencing reads were filtered first, and piRNA reads were annotated and normalized. Linear regression was used for the association analysis of piRNAs and peripheral blood eosinophil count, total serum IgE level, and long-term asthma exacerbation in children with asthma. Mediation analysis was performed to investigate the effect direction. We then ascertained if the circulating piRNAs were present in asthmatic airway epithelial cells in a Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo) public data set. RESULTS: Fifteen piRNAs were significantly associated with eosinophil count in CAMP (P ≤ .05), and 3 were successfully replicated in GACRS. Eleven piRNAs were associated with total IgE in CAMP, and one of these was replicated in GACRS. All 22 significant piRNAs were identified in epithelial cells in vitro, and 6 of these were differentially expressed between subjects with asthma and healthy controls. Fourteen piRNAs were associated with long-term asthma exacerbation, and effect of piRNAs on long-term asthma exacerbation are mediated through eosinophil count and serum IgE level. CONCLUSION: piRNAs are associated with peripheral blood eosinophils and total serum IgE in childhood asthma and may play important roles in T2-high asthma.


Asunto(s)
Asma , ARN de Interacción con Piwi , Niño , Humanos , ARN Interferente Pequeño/genética , Asma/genética , Inmunoglobulina E/genética , Fenotipo
9.
Res Sq ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37461659

RESUMEN

Rationale: Bronchodilator response (BDR) is a measure of improvement in airway smooth muscle tone, inhibition of liquid accumulation and mucus section into the lumen in response to short-acting beta-2 agonists that varies among asthmatic patients. MicroRNAs (miRNAs) are well-known post-translational regulators. Identifying miRNAs associated with BDR could lead to a better understanding of the underlying complex pathophysiology. Objective: The purpose of this study is to identify circulating miRNAs associated with bronchodilator response in asthma and decipher possible mechanism of bronchodilator response variation. Methods: We used available small RNA sequencing on blood serum from 1,134 asthmatic children aged 6 to 14 years who participated in the Genetics of Asthma in Costa Rica Study (GACRS). We filtered the participants into high and low bronchodilator response (BDR) quartiles and used DeSeq2 to identify miRNAs with differential expression (DE) in high (N= 277) vs low (N= 278) BDR group. Replication was carried out in the Leukotriene modifier Or Corticosteroids or Corticosteroid-Salmeterol trial (LOCCS), an adult asthma cohort. The putative target genes of DE miRNAs were identified, and pathway enrichment analysis was performed. Results: We identified 10 down-regulated miRNAs having odds ratios (OR) between 0.37 and 0.76 for a doubling of miRNA counts and one up-regulated miRNA (OR=2.26) between high and low BDR group. These were assessed for replication in the LOCCS cohort, where two miRNAs (miR-200b-3p and miR-1246) were associated. Further, functional annotation of 11 DE miRNAs were performed as well as of two replicated miRs. Target genes of these miRs were enriched in regulation of cholesterol biosynthesis by SREBPs, ESR-mediated signaling, G1/S transition, RHO GTPase cycle, and signaling by TGFB family pathways. Conclusion: MiRNAs miR-1246 and miR-200b-3p are associated with both childhood and adult asthma BDR. Our findings add to the growing body of evidence that miRNAs play a significant role in the difference of asthma treatment response among patients as it points to genomic regulatory machinery underlying difference in bronchodilator response among patients. Trial registration: LOCCS cohort [ClinicalTrials.gov number: NCT00156819], GACRS cohort [ClinicalTrials.gov number: NCT00021840].

10.
Sci Transl Med ; 15(699): eadf3843, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285400

RESUMEN

The association between neutrophil extracellular traps (NETs) and response to inhaled corticosteroids (ICS) in asthma is unclear. To better understand this relationship, we analyzed the blood transcriptomes from children with controlled and uncontrolled asthma in the Taiwanese Consortium of Childhood Asthma Study using weighted gene coexpression network analysis and pathway enrichment methods. We identified 298 uncontrolled asthma-specific differentially expressed genes and one gene module associated with neutrophil-mediated immunity, highlighting a potential role for neutrophils in uncontrolled asthma. We also found that NET abundance was associated with nonresponse to ICS in patients. In a neutrophilic airway inflammation murine model, steroid treatment could not suppress neutrophilic inflammation and airway hyperreactivity. However, NET disruption with deoxyribonuclease I (DNase I) efficiently inhibited airway hyperreactivity and inflammation. Using neutrophil-specific transcriptomic profiles, we found that CCL4L2 was associated with ICS nonresponse in asthma, which was validated in human and murine lung tissue. CCL4L2 expression was also negatively correlated with pulmonary function change after ICS treatment. In summary, steroids fail to suppress neutrophilic airway inflammation, highlighting the potential need to use alternative therapies such as leukotriene receptor antagonists or DNase I that target the neutrophil-associated phenotype. Furthermore, these results highlight CCL4L2 as a potential therapeutic target for individuals with asthma refractory to ICS.


Asunto(s)
Asma , Trampas Extracelulares , Animales , Niño , Humanos , Ratones , Corticoesteroides/farmacología , Corticoesteroides/uso terapéutico , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasa I/uso terapéutico , Trampas Extracelulares/metabolismo , Inflamación/metabolismo , Neutrófilos/metabolismo , Quimiocina CCL4/metabolismo
11.
Obes Sci Pract ; 9(3): 210-217, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37287517

RESUMEN

Objectives: Obesity is a risk factor for obstructive sleep apnea (OSA) in children. Childhood obesity rates vary amongst different ethnic groups. Here the interaction of Hispanic ethnicity and obesity on OSA risk was evaluated. Methods: Retrospective cross-sectional analysis of consecutive children undergoing polysomnography and anthropometry using bioelectrical impedance from 2017 to 2020. Demographics obtained from the medical chart. Children who had also undergone cardiometabolic testing were identified and the relationship of cardiometabolic markers with OSA and anthropometry was assessed. Results: Data from 1217 children revealed Hispanic children were more likely to have moderate-severe OSA (36.0%) compared to Non-Hispanic children (26.5%), p < 0.001. Hispanic children had greater Body mass index (BMI), BMI percentile and percent body fat, p < 0.0001. In children that underwent cardiometabolic testing, Hispanic children had significantly greater serum alanine aminotransferase levels (ALT) levels. Following adjustment of age and sex, Hispanic ethnicity was not found to moderate the association of anthropometry with OSA, anthropometry with cardiometabolic markers, and OSA with cardiometabolic markers. Conclusions: OSA was more likely in Hispanic children; this relationship was likely driven by obesity status rather than ethnicity. Among children undergoing cardiometabolic testing, Hispanic children were observed to have greater ALT concentrations however ethnicity did not impact the association of anthropometry and ALT or other cardiometabolic markers.

12.
Clin Pharmacol Ther ; 114(2): 275-287, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37303270

RESUMEN

Pharmacogenetics can improve clinical outcomes by reducing adverse drug effects and enhancing therapeutic efficacy for commonly used drugs that treat a wide range of cardiovascular diseases. One of the major barriers to the clinical implementation of cardiovascular pharmacogenetics is limited education on this field for current healthcare providers and students. The abundance of pharmacogenetic literature underscores its promise, but it can also be challenging to learn such a wealth of information. Moreover, current clinical recommendations for cardiovascular pharmacogenetics can be confusing because they are outdated, incomplete, or inconsistent. A myriad of misconceptions about the promise and feasibility of cardiovascular pharmacogenetics among healthcare providers also has halted clinical implementation. Therefore, the main goal of this tutorial is to provide introductory education on the use of cardiovascular pharmacogenetics in clinical practice. The target audience is any healthcare provider (or student) with patients that use or have indications for cardiovascular drugs. This tutorial is organized into the following 6 steps: (1) understand basic concepts in pharmacogenetics; (2) gain foundational knowledge of cardiovascular pharmacogenetics; (3) learn the different organizations that release cardiovascular pharmacogenetic guidelines and recommendations; (4) know the current cardiovascular drugs/drug classes to focus on clinically and the supporting evidence; (5) discuss an example patient case of cardiovascular pharmacogenetics; and (6) develop an appreciation for emerging areas in cardiovascular pharmacogenetics. Ultimately, improved education among healthcare providers on cardiovascular pharmacogenetics will lead to a greater understanding for its potential in improving outcomes for a leading cause of morbidity and mortality.


Asunto(s)
Fármacos Cardiovasculares , Enfermedades Cardiovasculares , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Farmacogenética/educación , Fármacos Cardiovasculares/efectos adversos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Personal de Salud
13.
Cells ; 12(11)2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37296627

RESUMEN

BACKGROUND: Asthmatic patients' responses to inhaled corticosteroids (ICS) are variable and difficult to quantify. We have previously defined a Cross-sectional Asthma STEroid Response (CASTER) measure of ICS response. MicroRNAs (miRNAs) have shown strong effects on asthma and inflammatory processes. OBJECTIVE: The purpose of this study was to identify key associations between circulating miRNAs and ICS response in childhood asthma. METHODS: Small RNA sequencing in peripheral blood serum from 580 children with asthma on ICS treatment from The Genetics of Asthma in Costa Rica Study (GACRS) was used to identify miRNAs associated with ICS response using generalized linear models. Replication was conducted in children on ICS from the Childhood Asthma Management Program (CAMP) cohort. The association between replicated miRNAs and the transcriptome of lymphoblastoid cell lines in response to a glucocorticoid was assessed. RESULTS: The association study on the GACRS cohort identified 36 miRNAs associated with ICS response at 10% false discovery rate (FDR), three of which (miR-28-5p, miR-339-3p, and miR-432-5p) were in the same direction of effect and significant in the CAMP replication cohort. In addition, in vitro steroid response lymphoblastoid gene expression analysis revealed 22 dexamethasone responsive genes were significantly associated with three replicated miRNAs. Furthermore, Weighted Gene Co-expression Network Analysis (WGCNA) revealed a significant association between miR-339-3p and two modules (black and magenta) of genes associated with immune response and inflammation pathways. CONCLUSION: This study highlighted significant association between circulating miRNAs miR-28-5p, miR-339-3p, and miR-432-5p and ICS response. miR-339-3p may be involved in immune dysregulation, which leads to a poor response to ICS treatment.


Asunto(s)
Asma , MicroARN Circulante , MicroARNs , Niño , Humanos , MicroARNs/metabolismo , Estudios Transversales , Asma/tratamiento farmacológico , Asma/genética , Corticoesteroides/uso terapéutico , Genómica
14.
Expert Rev Clin Immunol ; : 1-14, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37190963

RESUMEN

INTRODUCTION: Asthma is a heterogeneous, multifactorial disease with multiple genetic and environmental risk factors playing a role in pathogenesis and therapeutic response. Understanding of pharmacogenetics can help with matching individualized treatments to specific genotypes of asthma to improve therapeutic outcomes especially in uncontrolled or severe asthma. AREAS COVERED: In this review, we outline novel information about biology, pathways, and mechanisms related to interindividual variability in drug response (corticosteroids, bronchodilators, leukotriene modifiers, and biologics) for childhood asthma. We discuss candidate gene, genome-wide association studies and newer omics studies including epigenomics, transcriptomics, proteomics, and metabolomics as well as integrative genomics and systems biology methods related to childhood asthma. The articles were obtained after a series of searches, last updated November 2022, using database PubMed/CINAHL DB. EXPERT OPINION: Implementation of pharmacogenetic algorithms can improve therapeutic targeting in children with asthma, particularly with severe or uncontrolled asthma who typically have challenges in clinical management and carry considerable financial burden. Future studies focusing on potential biomarkers both clinical and pharmacogenetic can help formulate a prognostic test for asthma treatment response that would represent true bench to bedside clinical implementation.

15.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175432

RESUMEN

Intrauterine smoke (IUS) exposure during early childhood has been associated with a number of negative health consequences, including reduced lung function and asthma susceptibility. The biological mechanisms underlying these associations have not been established. MicroRNAs regulate the expression of numerous genes involved in lung development. Thus, investigation of the impact of IUS on miRNA expression during human lung development may elucidate the impact of IUS on post-natal respiratory outcomes. We sought to investigate the effect of IUS exposure on miRNA expression during early lung development. We hypothesized that miRNA-mRNA networks are dysregulated by IUS during human lung development and that these miRNAs may be associated with future risk of asthma and allergy. Human fetal lung samples from a prenatal tissue retrieval program were tested for differential miRNA expression with IUS exposure (measured using placental cotinine concentration). RNA was extracted and miRNA-sequencing was performed. We performed differential expression using IUS exposure, with covariate adjustment. We also considered the above model with an additional sex-by-IUS interaction term, allowing IUS effects to differ by male and female samples. Using paired gene expression profiles, we created sex-stratified miRNA-mRNA correlation networks predictive of IUS using DIABLO. We additionally evaluated whether miRNAs were associated with asthma and allergy outcomes in a cohort of childhood asthma. We profiled pseudoglandular lung miRNA in n = 298 samples, 139 (47%) of which had evidence of IUS exposure. Of 515 miRNAs, 25 were significantly associated with intrauterine smoke exposure (q-value < 0.10). The IUS associated miRNAs were correlated with well-known asthma genes (e.g., ORM1-Like Protein 3, ORDML3) and enriched in disease-relevant pathways (oxidative stress). Eleven IUS-miRNAs were also correlated with clinical measures (e.g., Immunoglobulin E andlungfunction) in children with asthma, further supporting their likely disease relevance. Lastly, we found substantial differences in IUS effects by sex, finding 95 significant IUS-miRNAs in male samples, but only four miRNAs in female samples. The miRNA-mRNA correlation networks were predictive of IUS (AUC = 0.78 in males and 0.86 in females) and suggested that IUS-miRNAs are involved in regulation of disease-relevant genes (e.g., A disintegrin and metalloproteinase domain 19 (ADAM19), LBH regulator of WNT signaling (LBH)) and sex hormone signaling (Coactivator associated methyltransferase 1(CARM1)). Our study demonstrated differential expression of miRNAs by IUS during early prenatal human lung development, which may be modified by sex. Based on their gene targets and correlation to clinical asthma and atopy outcomes, these IUS-miRNAs may be relevant for subsequent allergy and asthma risk. Our study provides insight into the impact of IUS in human fetal lung transcriptional networks and on the developmental origins of asthma and allergic disorders.


Asunto(s)
Asma , MicroARNs , Niño , Humanos , Masculino , Femenino , Preescolar , Embarazo , Humo , Placenta/metabolismo , Asma/genética , Pulmón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética
16.
medRxiv ; 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37214806

RESUMEN

Importance: The prevalence, pathophysiology, and long-term outcomes of COVID-19 (post-acute sequelae of SARS-CoV-2 [PASC] or "Long COVID") in children and young adults remain unknown. Studies must address the urgent need to define PASC, its mechanisms, and potential treatment targets in children and young adults. Observations: We describe the protocol for the Pediatric Observational Cohort Study of the NIH's RE searching COV ID to E nhance R ecovery (RECOVER) Initiative. RECOVER-Pediatrics is an observational meta-cohort study of caregiver-child pairs (birth through 17 years) and young adults (18 through 25 years), recruited from more than 100 sites across the US. This report focuses on two of five cohorts that comprise RECOVER-Pediatrics: 1) a de novo RECOVER prospective cohort of children and young adults with and without previous or current infection; and 2) an extant cohort derived from the Adolescent Brain Cognitive Development (ABCD) study ( n =10,000). The de novo cohort incorporates three tiers of data collection: 1) remote baseline assessments (Tier 1, n=6000); 2) longitudinal follow-up for up to 4 years (Tier 2, n=6000); and 3) a subset of participants, primarily the most severely affected by PASC, who will undergo deep phenotyping to explore PASC pathophysiology (Tier 3, n=600). Youth enrolled in the ABCD study participate in Tier 1. The pediatric protocol was developed as a collaborative partnership of investigators, patients, researchers, clinicians, community partners, and federal partners, intentionally promoting inclusivity and diversity. The protocol is adaptive to facilitate responses to emerging science. Conclusions and Relevance: RECOVER-Pediatrics seeks to characterize the clinical course, underlying mechanisms, and long-term effects of PASC from birth through 25 years old. RECOVER-Pediatrics is designed to elucidate the epidemiology, four-year clinical course, and sociodemographic correlates of pediatric PASC. The data and biosamples will allow examination of mechanistic hypotheses and biomarkers, thus providing insights into potential therapeutic interventions. Clinical Trialsgov Identifier: Clinical Trial Registration: http://www.clinicaltrials.gov . Unique identifier: NCT05172011.

17.
PLoS One ; 18(2): e0281666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36791067

RESUMEN

PURPOSE: Children are at elevated risk for COVID-19 (SARS-CoV-2) infection due to their social behaviors. The purpose of this study was to determine if usage of radiological chest X-rays impressions can help predict whether a young adult has COVID-19 infection or not. METHODS: A total of 2572 chest impressions from 721 individuals under the age of 18 years were considered for this study. An ensemble learning method, Random Forest Classifier (RFC), was used for classification of patients suffering from infection. RESULTS: Five RFC models were implemented with incremental features and the best model achieved an F1-score of 0.79 with Area Under the ROC curve as 0.85 using all input features. Hyper parameter tuning and cross validation was performed using grid search cross validation and SHAP model was used to determine feature importance. The radiological features such as pneumonia, small airways disease, and atelectasis (confounded with catheter) were found to be highly associated with predicting the status of COVID-19 infection. CONCLUSIONS: In this sample, radiological X-ray films can predict the status of COVID-19 infection with good accuracy. The multivariate model including symptoms presented around the time of COVID-19 test yielded good prediction score.


Asunto(s)
COVID-19 , Neumonía , Adulto Joven , Humanos , Niño , Adolescente , SARS-CoV-2 , Curva ROC , Aprendizaje Automático
18.
Nat Commun ; 14(1): 47, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599824

RESUMEN

Obesity increases asthma prevalence and severity. However, the underlying mechanisms are poorly understood, and consequently, therapeutic options for asthma patients with obesity remain limited. Here we report that cholecystokinin-a metabolic hormone best known for its role in signaling satiation and fat metabolism-is increased in the lungs of obese mice and that pharmacological blockade of cholecystokinin A receptor signaling reduces obesity-associated airway hyperresponsiveness. Activation of cholecystokinin A receptor by the hormone induces contraction of airway smooth muscle cells. In vivo, cholecystokinin level is elevated in the lungs of both genetically and diet-induced obese mice. Importantly, intranasal administration of cholecystokinin A receptor antagonists (proglumide and devazepide) suppresses the airway hyperresponsiveness in the obese mice. Together, our results reveal an unexpected role for cholecystokinin in the lung and support the repurposing of cholecystokinin A receptor antagonists as a potential therapy for asthma patients with obesity.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Animales , Ratones , Asma/tratamiento farmacológico , Asma/metabolismo , Colecistoquinina/metabolismo , Pulmón/metabolismo , Ratones Obesos , Obesidad/complicaciones , Obesidad/metabolismo , Receptor de Colecistoquinina A/genética , Receptor de Colecistoquinina A/metabolismo , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/metabolismo
19.
Thorax ; 78(5): 432-441, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35501119

RESUMEN

INTRODUCTION: Older adults have the greatest burden of asthma and poorest outcomes. The pharmacogenetics of inhaled corticosteroid (ICS) treatment response is not well studied in older adults. METHODS: A genome-wide association study of ICS response was performed in asthmatics of European ancestry in Genetic Epidemiology Research on Adult Health and Aging (GERA) by fitting Cox proportional hazards regression models, followed by validation in the Mass General Brigham (MGB) Biobank and Rotterdam Study. ICS response was measured using two definitions in asthmatics on ICS treatment: (1) absence of oral corticosteroid (OCS) bursts using prescription records and (2) absence of asthma-related exacerbations using diagnosis codes. A fixed-effect meta-analysis was performed for each outcome. The validated single-nucleotide polymorphisms (SNPs) were functionally annotated to standard databases. RESULTS: In 5710 subjects in GERA, 676 subjects in MGB Biobank, and 465 subjects in the Rotterdam Study, four novel SNPs on chromosome six near PTCHD4 validated across all cohorts and met genome-wide significance on meta-analysis for the OCS burst outcome. In 4541 subjects in GERA and 505 subjects in MGB Biobank, 152 SNPs with p<5 × 10-5 were validated across these two cohorts for the asthma-related exacerbation outcome. The validated SNPs included methylation and expression quantitative trait loci for CPED1, CRADD and DST for the OCS burst outcome and GM2A, SNW1, CACNA1C, DPH1, and RPS10 for the asthma-related exacerbation outcome. CONCLUSIONS: Multiple novel SNPs associated with ICS response were identified in older adult asthmatics. Several SNPs annotated to genes previously associated with asthma and other airway or allergic diseases, including PTCHD4.


Asunto(s)
Antiasmáticos , Asma , Humanos , Anciano , Estudio de Asociación del Genoma Completo , Administración por Inhalación , Asma/tratamiento farmacológico , Asma/genética , Asma/epidemiología , Corticoesteroides/uso terapéutico
20.
J Allergy Clin Immunol Pract ; 11(3): 855-862.e4, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36521833

RESUMEN

BACKGROUND: Asthma is the most common pediatric chronic disease; thus, clinical guidelines have been developed for its assessment and management, which rely on systematic symptom documentation. Electronic health records (EHR) have the potential to record clinical data systematically; however, variability in documentation persists. OBJECTIVE: To identify if the use of a structured asthma template is associated with increased guideline-based asthma documentation and clinical outcomes when compared with the use of nonstructured ones. METHODS: We performed a retrospective case-control study comparing the use of nonstructured templates (NSTs) and asthma-structured templates (ASTs) in new patient and first follow-up encounters, evaluated by pediatric pulmonologists between March 2016 and December 2021. Asthma history items were selected following clinical guidelines, summarized in 29 items for new and 22 items for follow-up encounters. Associations with demographic, spirometry, and health care utilization were explored. RESULTS: A total of 546 initial encounters were included; 450 used structured templates. The use of an AST was associated with higher documentation of asthma items in initial and follow-up encounters. Linear regression analysis showed that the use of ASTs was associated with a 28.2% and 39.65% increase in asthma history completeness (in initial and follow-up encounters, respectively), compared with the use of NSTs. AST use was associated with higher rates of systemic steroid prescriptions within 12 months. No other differences were observed after adjusting for asthma severity. CONCLUSIONS: Using asthma-specific structured templates was associated with increased guideline-based asthma documentation. Leveraging the EHR as a clinical and research tool has the potential to improve clinical practice.


Asunto(s)
Asma , Registros Electrónicos de Salud , Humanos , Niño , Estudios Retrospectivos , Estudios de Casos y Controles , Documentación , Asma/diagnóstico , Asma/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...