Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 37(10): 110094, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879272

RESUMEN

Cognitive impairment (CI) is a disabling concomitant of multiple sclerosis (MS) with a complex and controversial pathogenesis. The cytokine interleukin-17A (IL-17A) is involved in the immune pathogenesis of MS, but its possible effects on synaptic function and cognition are still largely unexplored. In this study, we show that the IL-17A receptor (IL-17RA) is highly expressed by hippocampal neurons in the CA1 area and that exposure to IL-17A dose-dependently disrupts hippocampal long-term potentiation (LTP) through the activation of its receptor and p38 mitogen-activated protein kinase (MAPK). During experimental autoimmune encephalomyelitis (EAE), IL-17A overexpression is paralleled by hippocampal LTP dysfunction. An in vivo behavioral analysis shows that visuo-spatial learning abilities are preserved when EAE is induced in mice lacking IL-17A. Overall, this study suggests a key role for the IL-17 axis in the neuro-immune cross-talk occurring in the hippocampal CA1 area and its potential involvement in synaptic dysfunction and MS-related CI.


Asunto(s)
Conducta Animal , Región CA1 Hipocampal/metabolismo , Cognición , Encefalomielitis Autoinmune Experimental/metabolismo , Interleucina-17/metabolismo , Plasticidad Neuronal , Receptores de Interleucina-17/metabolismo , Sinapsis/metabolismo , Animales , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiopatología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Encefalomielitis Autoinmune Experimental/psicología , Interleucina-17/genética , Potenciación a Largo Plazo , Masculino , Ratones Biozzi , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-17/genética , Transducción de Señal , Aprendizaje Espacial , Sinapsis/patología , Proteínas Quinasas p38 Activadas por Mitógenos
2.
Mov Disord ; 34(6): 832-844, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30759320

RESUMEN

OBJECTIVE: Spreading depolarization (SD) is a transient self-propagating wave of neuronal and glial depolarization coupled with large membrane ionic changes and a subsequent depression of neuronal activity. Spreading depolarization in the cortex is implicated in migraine, stroke, and epilepsy. Conversely, spreading depolarization in the striatum, a brain structure deeply involved in motor control and in Parkinson's disease (PD) pathophysiology, has been poorly investigated. METHODS: We characterized the participation of glutamatergic and dopaminergic transmission in the induction of striatal spreading depolarization by using a novel approach combining optical imaging, measurements of endogenous DA levels, and pharmacological and molecular analyses. RESULTS: We found that striatal spreading depolarization requires the concomitant activation of D1-like DA and N-methyl-d-aspartate receptors, and it is reduced in experimental PD. Chronic l-dopa treatment, inducing dyskinesia in the parkinsonian condition, increases the occurrence and speed of propagation of striatal spreading depolarization, which has a direct impact on one of the signaling pathways downstream from the activation of D1 receptors. CONCLUSION: Striatal spreading depolarization might contribute to abnormal basal ganglia activity in the dyskinetic condition and represents a possible therapeutic target. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Cuerpo Estriado/fisiopatología , Neuronas Dopaminérgicas/fisiología , Discinesia Inducida por Medicamentos/fisiopatología , Levodopa/farmacología , Neuronas/fisiología , Trastornos Parkinsonianos/fisiopatología , Transmisión Sináptica/fisiología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Antiparkinsonianos/farmacología , Cuerpo Estriado/efectos de los fármacos , Compuestos de Mostaza Nitrogenada/metabolismo , Prednisolona/metabolismo , Procarbazina/metabolismo , Ratas , Ratas Wistar , Vincristina/metabolismo
3.
Neuropharmacology ; 135: 424-430, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29614316

RESUMEN

Lacosamide ([(R)-2-acetamido-N-benzyl-3-methoxypropanamide], LCM), is an antiepileptic that exerts anticonvulsant activity by selectively enhancing slow sodium channel inactivation. By inhibiting seizures and neuronal excitability it might therefore be a good candidate to stabilize neurons and protect them from energetic insults. Using electrophysiological analyses, we have investigated in mice the possible neuroprotective effect of LCM against in vitro ischemia obtained by oxygen and glucose deprivation (ODG), in striatal and hippocampal tissues, two brain structures particularly susceptible to ischemic injury and of pivotal importance for different form of learning and memory. We also explored in these regions the influence of LCM on firing discharge and on long-term synaptic plasticity. We found that in both areas LCM reduced the neuronal firing activity in a use-dependent manner without influencing the physiological synaptic transmission, confirming its anticonvulsant effects. Moreover, we found that this AED is able to protect, in a dose dependent manner, striatal and hippocampal neurons from energy metabolism failure produced by OGD. This neuroprotective effect does not imply impairment of long-term potentiation of striatal and hippocampal synapses and suggests that LCM might exert additional beneficial therapeutic effects beyond its use as antiepileptic.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Región CA1 Hipocampal/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Lacosamida/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/fisiopatología , Región CA1 Hipocampal/fisiopatología , Cuerpo Estriado/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
4.
Cell Death Dis ; 9(2): 204, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29434188

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder in which genetic and environmental factors synergistically lead to loss of midbrain dopamine (DA) neurons. Mutation of leucine-rich repeated kinase2 (Lrrk2) genes is responsible for the majority of inherited familial cases of PD and can also be found in sporadic cases. The pathophysiological role of this kinase has to be fully understood yet. Hyperactivation of Lrrk2 kinase domain might represent a predisposing factor for both enhanced striatal glutamatergic release and mitochondrial vulnerability to environmental factors that are observed in PD. To investigate possible alterations of striatal susceptibility to mitochondrial dysfunction, we performed electrophysiological recordings from the nucleus striatum of a G2019S Lrrk2 mouse model of PD, as well as molecular and morphological analyses of G2019S Lrrk2-expressing SH-SY5Y neuroblastoma cells. In G2019S mice, we found reduced striatal DA levels, according to the hypothesis of alteration of dopaminergic transmission, and increased loss of field potential induced by the mitochondrial complex I inhibitor rotenone. This detrimental effect is reversed by the D2 DA receptor agonist quinpirole via the inhibition of the cAMP/PKA intracellular pathway. Analysis of mitochondrial functions in G2019S Lrrk2-expressing SH-SY5Y cells revealed strong rotenone-induced oxidative stress characterized by reduced Ca2+ buffering capability and ATP synthesis, production of reactive oxygen species, and increased mitochondrial fragmentation. Importantly, quinpirole was able to prevent all these changes. We suggest that the G2019S-Lrrk2 mutation is a predisposing factor for enhanced striatal susceptibility to mitochondrial dysfunction induced by exposure to mitochondrial environmental toxins and that the D2 receptor stimulation is neuroprotective on mitochondrial function, via the inhibition of cAMP/PKA intracellular pathway. We suggest new possible neuroprotective strategies for patients carrying this genetic alteration based on drugs specifically targeting Lrrk2 kinase domain and mitochondrial functionality.


Asunto(s)
Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mesencéfalo/metabolismo , Neuroprotección , Enfermedad de Parkinson/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Dopamina/genética , Dopamina/metabolismo , Neuronas Dopaminérgicas/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Mesencéfalo/patología , Ratones , Ratones Mutantes , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Receptores de Dopamina D2/genética
5.
Neurobiol Dis ; 113: 97-108, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29325869

RESUMEN

During multiple sclerosis (MS), a close link has been demonstrated to occur between inflammation and neuro-axonal degeneration, leading to the hypothesis that immune mechanisms may promote neurodegeneration, leading to irreversible disease progression. Energy deficits and inflammation-driven mitochondrial dysfunction seem to be involved in this process. In this work we investigated, by the use of striatal electrophysiological field-potential recordings, if the inflammatory process associated with experimental autoimmune encephalomyelitis (EAE) is able to influence neuronal vulnerability to the blockade of mitochondrial complex IV, a crucial component for mitochondrial activity responsible of about 90% of total cellular oxygen consumption. We showed that during the acute relapsing phase of EAE, neuronal susceptibility to mitochondrial complex IV inhibition is markedly enhanced. This detrimental effect was counteracted by the pharmacological inhibition of microglia, of nitric oxide (NO) synthesis and its intracellular pathway (involving soluble guanylyl cyclase, sGC, and protein kinase G, PKG). The obtained results suggest that mitochondrial complex IV exerts an important role in maintaining neuronal energetic homeostasis during EAE. The pathological processes associated with experimental MS, and in particular the activation of microglia and of the NO pathway, lead to an increased neuronal vulnerability to mitochondrial complex IV inhibition, representing promising pharmacological targets.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Microglía/metabolismo , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Animales , GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Óxido Nítrico/antagonistas & inhibidores , Técnicas de Cultivo de Órganos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Azida Sódica/farmacología , Azida Sódica/uso terapéutico
6.
Neurobiol Aging ; 48: 161-171, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27701029

RESUMEN

Experimental and clinical observations indicate that amyloid-ß1-42 (Aß1-42) peptide not only represents a major actor in neurodegenerative mechanisms but also induce hyperexcitation in individual neurons and neural circuits. In this abnormal excitability, possibly leading to seizures, the D1 dopamine (DA) receptors may play a role. Cerebrospinal fluid levels of Aß1-42 were measured in patients with late-onset epilepsy of unknown etiology. Moreover, the effect of amyloid peptide on the hippocampal epileptic threshold and synaptic plasticity and its link to D1 receptor function were tested in experimental mouse model of cerebral amyloidosis and in acute model of Aß1-42-induced neurotoxicity. Among 272 evaluated epileptic patients, aged >55 years, 35 suffered from late-onset epilepsy of unknown etiology. In these subjects, cerebrospinal fluid Aß1-42 levels were measured. The effects of Aß1-42, amyloid oligomers, and D1 receptor modulation on epileptic threshold were analyzed by electrophysiological recordings in the dentate gyrus of mice hippocampal slices. We found that Aß1-42 levels were significantly decreased in cerebrospinal fluid of patients with late-onset epilepsy of unknown etiology with respect to controls suggesting the cerebral deposition of this peptide in these patients. Aß1-42 enhanced epileptic activity in mice through a mechanism involving increased surface expression of D1 receptor, and this effect was mimicked by D1 receptor stimulation and blocked by SCH 23390, a D1 receptor antagonist. Aß1-42 may contribute to the pathophysiology of late-onset epilepsy of unknown origin. Our preclinical findings indicate that the D1 receptor is involved in mediating the epileptic effects of Aß1-42. This novel link between Aß1-42 and D1 receptor signaling might represent a potential therapeutic target.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Epilepsia/etiología , Fragmentos de Péptidos/metabolismo , Receptores de Dopamina D1/fisiología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/líquido cefalorraquídeo , Animales , Benzazepinas/farmacología , Modelos Animales de Enfermedad , Epilepsia/genética , Femenino , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Fragmentos de Péptidos/líquido cefalorraquídeo , Receptores de Dopamina D1/antagonistas & inhibidores
8.
Sci Rep ; 6: 20926, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26887636

RESUMEN

Cognitive impairment is common in multiple sclerosis (MS). Unfortunately, the synaptic and molecular mechanisms underlying MS-associated cognitive dysfunction are largely unknown. We explored the presence and the underlying mechanism of cognitive and synaptic hippocampal dysfunction during the remission phase of experimental MS. Experiments were performed in a chronic-relapsing experimental autoimmune encephalomyelitis (EAE) model of MS, after the resolution of motor deficits. Immunohistochemistry and patch-clamp recordings were performed in the CA1 hippocampal area. The hole-board was utilized as cognitive/behavioural test. In the remission phase of experimental MS, hippocampal microglial cells showed signs of activation, CA1 hippocampal synapses presented an impaired long-term potentiation (LTP) and an alteration of spatial tests became evident. The activation of hippocampal microglia mediated synaptic and cognitive/behavioural alterations during EAE. Specifically, LTP blockade was found to be caused by the reactive oxygen species (ROS)-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. We suggest that in the remission phase of experimental MS microglia remains activated, causing synaptic dysfunctions mediated by NADPH oxidase. Inhibition of microglial activation and NADPH oxidase may represent a promising strategy to prevent neuroplasticity impairment associated with active neuro-inflammation, with the aim to improve cognition and counteract MS disease progression.


Asunto(s)
Conducta Animal , Región CA1 Hipocampal , Cognición , Potenciación a Largo Plazo , Microglía , Esclerosis Múltiple , NADPH Oxidasas/metabolismo , Animales , Región CA1 Hipocampal/enzimología , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiopatología , Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Activación Enzimática , Femenino , Ratones , Microglía/enzimología , Microglía/patología , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología
9.
Biol Psychiatry ; 79(5): 402-414, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26392130

RESUMEN

BACKGROUND: Advanced Parkinson's disease (PD) is characterized by massive degeneration of nigral dopaminergic neurons, dramatic motor and cognitive alterations, and presence of nigral Lewy bodies, whose main constituent is α-synuclein (α-syn). However, the synaptic mechanisms underlying behavioral and motor effects induced by early selective overexpression of nigral α-syn are still a matter of debate. METHODS: We performed behavioral, molecular, and immunohistochemical analyses in two transgenic models of PD, mice transgenic for truncated human α-synuclein 1-120 and rats injected with the adeno-associated viral vector carrying wild-type human α-synuclein. We also investigated striatal synaptic plasticity by electrophysiological recordings from spiny projection neurons and cholinergic interneurons. RESULTS: We found that overexpression of truncated or wild-type human α-syn causes partial reduction of striatal dopamine levels and selectively blocks the induction of long-term potentiation in striatal cholinergic interneurons, producing early memory and motor alterations. These effects were dependent on α-syn modulation of the GluN2D-expressing N-methyl-D-aspartate receptors in cholinergic interneurons. Acute in vitro application of human α-syn oligomers mimicked the synaptic effects observed ex vivo in PD models. CONCLUSIONS: We suggest that striatal cholinergic dysfunction, induced by a direct interaction between α-syn and GluN2D-expressing N-methyl-D-aspartate receptors, represents a precocious biological marker of the disease.


Asunto(s)
Neuronas Colinérgicas/efectos de los fármacos , Dopamina/fisiología , Enfermedad de Parkinson/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato/genética , alfa-Sinucleína/genética , Animales , Animales Modificados Genéticamente , Dependovirus , Modelos Animales de Enfermedad , Femenino , Humanos , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Transgénicos , Neostriado/fisiología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Transmisión Sináptica
10.
Front Cell Neurosci ; 9: 192, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074768

RESUMEN

17ß-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs). Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson's disease.

11.
Int J Biochem Cell Biol ; 58: 62-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25462158

RESUMEN

A critical role of endosomal-lysosomal system alteration in neurodegeneration is supported by several studies. Dysfunction of the lysosomal compartment is a common feature also in Alzheimer's disease. Altered expression of lysosomal glycohydrolases has been demonstrated not only in the brain and peripheral tissues of Alzheimer's disease patients, but also in presymptomatic subjects before degenerative phenomenon becomes evident. Moreover, the presence of glycohydrolases associated to the plasma membrane have been widely demonstrated and their alteration in pathological conditions has been documented. In particular, lipid microdomains-associated glycohydrolases can be functional to the maintenance of the proper glycosphingolipids pattern, especially at cell surface level, where they are crucial for the function of cell types such as neurons. In this study we investigated the localization of ß-hexosaminidase and ß-galactosidase glycohydrolases, both involved in step by step degradation of the GM1 to GM3 gangliosides, in lipid microdomains from the cortex of both an early and advanced TgCRND8 mouse model of Alzheimer's disease. Throughout immunoprecipitation experiments of purified cortical lipid microdomains, we demonstrated for the first time that ß-hexosaminidase and ß-galactosidase are associated with post-synaptic vesicles and that their activities are increased at both the early and the advanced stage of Alzheimer's disease. The early increase of lipid microdomain-associated ß-hexosaminidase and ß-galactosidase activities could have relevant implications for the pathophysiology of the disease since their possible pharmacological manipulation could shed light on new reliable targets and biological markers of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Membrana Celular/enzimología , Lisosomas/enzimología , beta-Galactosidasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Western Blotting , Membrana Celular/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Humanos , Técnicas In Vitro , Microdominios de Membrana/genética , Microdominios de Membrana/metabolismo , Ratones , Ratones Transgénicos , beta-Galactosidasa/genética
12.
Neurobiol Aging ; 36(1): 123-33, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25104560

RESUMEN

To characterize the mechanisms underlying region- and age-dependent hippocampal synaptic dysfunction in Alzheimer's disease, we used transgenic CRND8 mice, expressing the Swedish-Indiana APP mutation. In 2-month-old mice, no ß-amyloid plaques deposition, but the presence of soluble oligomers, were found in CA1 area but not in dentate gyrus (DG). At this age, long-term potentiation (LTP) was reduced selectively in CA1. In 6-month-old mice, the presence of soluble oligomers was accompanied by accumulation of ß-amyloid plaques and decreased LTP in CA1 and DG regions. In both regions, the loss of LTP was linked to reduced N-methyl-D-aspartate (NMDA) to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) current ratio. The acetylcholine-esterase inhibitor, neostigmine rescued LTP in CA1 area at early stage of the disease but not after plaques deposition. Conversely, the NMDA receptor antagonist memantine restored LTP selectively in DG at later stages of the disease. Both these effects were associated with a normalization of the NMDA to AMPA ratio. The association between the recovery of LTP and the normalization of the NMDA to AMPA ratio provides information on new possible therapeutic strategies in Alzheimer's disease.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Potenciación a Largo Plazo/genética , N-Metilaspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Enfermedad de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Animales , Inhibidores de la Colinesterasa/farmacología , Modelos Animales de Enfermedad , Potenciación a Largo Plazo/efectos de los fármacos , Ratones Transgénicos , Terapia Molecular Dirigida , Mutación , Neostigmina/farmacología , Placa Amiloide/metabolismo
13.
Neurobiol Dis ; 62: 387-93, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24135008

RESUMEN

Multiple sclerosis, one of the main causes of non-traumatic neurological disability in young adults, is an inflammatory and neurodegenerative disorder of the central nervous system. Although the pathogenesis of neuroaxonal damage occurring during the course of the disease is still largely unknown, there is accumulating evidence highlighting the potential role of mitochondria in multiple sclerosis-associated neuronal degeneration. The aim of the present study was to investigate, by utilizing electrophysiological techniques in brain striatal slices, the potential protective effects of interferon-ß1a, one of the most widely used medication for multiple sclerosis, against acute neuronal dysfunction induced by mitochondrial toxins. Interferon-ß1a was found to exert a dose-dependent protective effect against the progressive loss of striatal field potential amplitude induced by the mitochondrial complex I inhibitor rotenone. Interferon-ß1a also reduced the generation of the rotenone-induced inward current in striatal spiny neurons. Conversely, interferon-ß1a did not influence the electrophysiological effects of the mitochondrial complex II inhibitor 3-nitropropionic acid. The protective effect of interferon-ß1a against mitochondrial complex I inhibition was found to be dependent on the activation of STAT1 signaling. Conversely, endogenous dopamine depletion and the modulation of the p38 MAPK and mTOR pathways did not influence the effects of interferon-ß1a. During experimental autoimmune encephalomyelitis (EAE) striatal rotenone toxicity was enhanced but the protective effect of interferon-ß1a was still evident. These results support future studies investigating the role played by specific intracellular signaling pathways in mediating the potential link among inflammation, mitochondrial impairment and neuroaxonal degeneration in multiple sclerosis.


Asunto(s)
Interferón beta/uso terapéutico , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Interferón beta-1a , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Neuronas/fisiología , Ratas , Rotenona/toxicidad , Factor de Transcripción STAT1/metabolismo , Desacopladores/toxicidad
14.
PLoS One ; 8(7): e68428, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874624

RESUMEN

Neuroinflammation is believed to be involved in the pathophysiological mechanisms of silent brain infarcts (SBI). However, the immunological profile of SBI has been scarcely investigated. In the context of a national research project named SILENCE, aimed at investigating clinical, biochemical and pathogenic features of SBI, we have measured the plasma profile of some inflammatory-related molecules in SBI patients (n = 21), patients with recent lacunar infarcts (LI, n = 28) and healthy controls (n = 31), consecutively enrolled in four Italian centres. A panel of chemokines (MIG, CTACK, IL16, SDF1a, MCP1), growth factors (SCF, SCGFb, HGF, IL3), immunoglobulin-type adhesion molecules (ICAM1, VCAM1), proinflammatory cytokines (IL18, INFa2, MIF, IL12p40), cell surface receptors on T-cells (IL2Ra), and inductors of apoptosis (TRAIL) was assessed in plasma samples by Luminex xMAP™ technology. Immunological parameters were compared using non-parametric statistics and performance to distinguish SBI and LI was evaluated by receiver operating characteristic (ROC) analysis. Plasma levels of ICAM1 were significantly higher in both SBI and LI patients as compared to controls (SBI≥LI>Ctrl). A different trend was observed for IL16 (SBI

  • Ctrl), SCF (LICtrl) and SCGFb (SBI>LICtrl) and IL18 when compared to LI patients (Ctrl≤SBI>LI). All the other immunological markers did not significantly differ among groups. According to ROC analysis, the best predictor for SBI condition was the chemokine MIG (AUC = 0.84, sensitivity 86%, specificity 77%), while SCF had the best performance in distinguishing LI patients (AUC = 0.84, sensitivity 86%, specificity 68%). These results confirm the involvement of inflammatory processes in cerebrovascular disorders, particularly in SBI, a very common age-related condition. The differences in plasma profile of inflammatory molecules may underlie different pathological mechanisms in SBI and LI patients.


    Asunto(s)
    Infarto Encefálico/inmunología , Infarto Encefálico/metabolismo , Accidente Vascular Cerebral Lacunar/inmunología , Accidente Vascular Cerebral Lacunar/metabolismo , Anciano , Biomarcadores , Infarto Encefálico/etiología , Moléculas de Adhesión Celular/sangre , Quimiocinas/sangre , Citocinas/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Receptores de Superficie Celular/metabolismo , Factores de Riesgo , Accidente Vascular Cerebral Lacunar/etiología
  • 15.
    Blood ; 121(25): 5088-97, 2013 Jun 20.
    Artículo en Inglés | MEDLINE | ID: mdl-23589671

    RESUMEN

    Thrombolytic therapy is the cornerstone of treatment of acute atherothrombotic ischemic stroke but is associated with brain hemorrhage; antiplatelet therapy has limited efficacy and is still associated with intracranial bleeding. Therefore, new antithrombotic approaches with a better efficacy/safety ratio are required. We have assessed the effect of ALX-0081, a Nanobody against the A1 domain of von Willebrand factor (VWF) that blocks VWF binding to GPIb, of the thrombolytic agent recombinant tissue plasminogen activator (rtPA), and of the GPIIb/IIIa antagonist tirofiban, in a middle cerebral artery (MCA) thrombosis model in guinea pigs. Drugs were administered before, immediately after, or 15 or 60 minutes after the total occlusion of the MCA. ALX-0081 prevented MCA thrombosis and induced reperfusion when given immediately after and 15 minutes after complete occlusion and reduced brain damage without inducing hemorrhage, whereas tirofiban prevented thrombosis but did not induce reperfusion and induced striking brain hemorrhage. rtPA also induced reperfusion when given 60 minutes after occlusion but provoked brain hemorrhage. Skin bleeding time was not modified or was moderately prolonged by ALX-0081, whereas tirofiban and rtPA prolonged it. The inhibition of the GPIb-VWF axis in guinea pigs prevents cerebral artery thrombosis and induces early reperfusion without provoking intracerebral bleeding thus reducing brain infarct area.


    Asunto(s)
    Infarto Encefálico/prevención & control , Fibrinolíticos/farmacología , Trombosis Intracraneal/tratamiento farmacológico , Anticuerpos de Dominio Único/farmacología , Terapia Trombolítica/métodos , Animales , Arterias Cerebrales/patología , Modelos Animales de Enfermedad , Cobayas , Masculino , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/antagonistas & inhibidores , Reperfusión/métodos , Factor de von Willebrand/antagonistas & inhibidores
    16.
    Neurobiol Dis ; 52: 229-36, 2013 Apr.
    Artículo en Inglés | MEDLINE | ID: mdl-23295855

    RESUMEN

    The central nervous system (CNS) and the immune system are known to be engaged in an intense bidirectional crosstalk. In particular, the immune system has the potential to influence the induction of brain plastic phenomena and neuronal networks functioning. During direct CNS inflammation, as well as during systemic, peripheral, inflammation, the modulation exerted by neuroinflammatory mediators on synaptic plasticity might negatively influence brain neuronal networks functioning. The aim of the present study was to investigate, by using electrophysiological techniques, the ability of hippocampal excitatory synapses to undergo synaptic plasticity during the initial clinical phase of an experimental model of CNS (experimental autoimmune encephalomyelitis, EAE) as well as following a systemic inflammatory trigger. Moreover, we compared the morphologic, synaptic and molecular consequences of central neuroinflammation with those accompanying peripheral inflammation. Hippocampal long-term potentiation (LTP) has been studied by extracellular field potential recordings in the CA1 region. Immunohistochemistry was performed to investigate microglia activation. Western blot and ELISA assays have been performed to assess changes in the subunit composition of the synaptic glutamate NMDA receptor and the concentration of pro-inflammatory cytokines in the hippocampus. Significant microglial activation together with an impairment of CA1 LTP was present in the hippocampus of mice with central as well as peripheral inflammation. Interestingly, exclusively during EAE but not during systemic inflammation, the impairment of hippocampal LTP was paralleled by a selective reduction of the NMDA receptor NR2B subunit levels and a selective increase of interleukin-1ß (IL1ß) levels. Both central and peripheral inflammation-triggered mechanisms can activate CNS microglia and influence the function of CNS synapses. During direct CNS inflammation these events are accompanied by detectable changes in synaptic glutamate receptors subunit composition and in the levels of the pro-inflammatory cytokine IL1ß.


    Asunto(s)
    Hipocampo/fisiopatología , Inflamación/fisiopatología , Potenciación a Largo Plazo/fisiología , Sinapsis/fisiología , Animales , Encefalomielitis Autoinmune Experimental/fisiopatología , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Transmisión Sináptica/fisiología
    17.
    J Cereb Blood Flow Metab ; 33(2): 278-86, 2013 Feb.
    Artículo en Inglés | MEDLINE | ID: mdl-23149555

    RESUMEN

    Striatal medium-sized spiny neurons (MSNs) are highly vulnerable to ischemia. A brief ischemic insult, produced by oxygen and glucose deprivation (OGD), can induce ischemic long-term potentiation (i-LTP) of corticostriatal excitatory postsynaptic response. Since nitric oxide (NO) is involved in the pathophysiology of brain ischemia and the dopamine D1/D5-receptors (D1-like-R) are expressed in striatal NOS-positive interneurons, we hypothesized a relation between NOS-positive interneurons and striatal i-LTP, involving D1R activation and NO production. We investigated the mechanisms involved in i-LTP induced by OGD in corticostriatal slices and found that the D1-like-R antagonist SCH-23390 prevented i-LTP in all recorded MSNs. Immunofluorescence analysis confirmed the induction of i-LTP in both substance P-positive, (putative D1R-expressing) and adenosine A2A-receptor-positive (putative D2R-expressing) MSNs. Furthermore, i-LTP was dependent on a NOS/cGMP pathway since pharmacological blockade of NOS, guanylate-cyclase, or PKG prevented i-LTP. However, these compounds failed to prevent i-LTP in the presence of a NO donor or cGMP analog, respectively. Interestingly, the D1-like-R antagonism failed to prevent i-LTP when intracellular cGMP was pharmacologically increased. We propose that NO, produced by striatal NOS-positive interneurons via the stimulation of D1-like-R located on these cells, is critical for i-LTP induction in the entire population of MSNs involving a cGMP-dependent pathway.


    Asunto(s)
    Isquemia Encefálica/metabolismo , Cuerpo Estriado/metabolismo , GMP Cíclico/metabolismo , Guanilato Ciclasa/metabolismo , Interneuronas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico/metabolismo , Receptores de Dopamina D1/metabolismo , Transmisión Sináptica , Animales , Benzazepinas/farmacología , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Cuerpo Estriado/fisiopatología , Glucosa/metabolismo , Interneuronas/patología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Donantes de Óxido Nítrico/farmacología , Oxígeno/metabolismo , Ratas , Ratas Wistar , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D5/antagonistas & inhibidores , Receptores de Dopamina D5/metabolismo
    18.
    PLoS One ; 7(6): e38312, 2012.
    Artículo en Inglés | MEDLINE | ID: mdl-22715379

    RESUMEN

    BACKGROUND: Cocaine increases the level of endogenous dopamine (DA) in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs) have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. PRINCIPAL FINDINGS: Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. CONCLUSIONS: The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine.


    Asunto(s)
    Antagonistas del Receptor de Adenosina A2/farmacología , Cocaína/farmacología , Cuerpo Estriado/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Actividad Motora/efectos de los fármacos , Receptor de Adenosina A2A/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Antipsicóticos/farmacología , Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Neuronas Colinérgicas/metabolismo , Masculino , Ratas , Ratas Wistar , Sulpirida/farmacología
    19.
    Brain ; 135(Pt 6): 1884-99, 2012 Jun.
    Artículo en Inglés | MEDLINE | ID: mdl-22561640

    RESUMEN

    Although patients with Parkinson's disease show impairments in cognitive performance even at the early stage of the disease, the synaptic mechanisms underlying cognitive impairment in this pathology are unknown. Hippocampal long-term potentiation represents the major experimental model for the synaptic changes underlying learning and memory and is controlled by endogenous dopamine. We found that hippocampal long-term potentiation is altered in both a neurotoxic and transgenic model of Parkinson's disease and this plastic alteration is associated with an impaired dopaminergic transmission and a decrease of NR2A/NR2B subunit ratio in synaptic N-methyl-d-aspartic acid receptors. Deficits in hippocampal-dependent learning were also found in hemiparkinsonian and mutant animals. Interestingly, the dopamine precursor l-DOPA was able to restore hippocampal synaptic potentiation via D1/D5 receptors and to ameliorate the cognitive deficit in parkinsonian animals suggesting that dopamine-dependent impairment of hippocampal long-term potentiation may contribute to cognitive deficits in patients with Parkinson's disease.


    Asunto(s)
    Hipocampo/fisiopatología , Potenciación a Largo Plazo/fisiología , Trastornos de la Memoria/etiología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Análisis de Varianza , Animales , Antiparkinsonianos/farmacología , Antiparkinsonianos/uso terapéutico , Benserazida/farmacología , Benserazida/uso terapéutico , Fenómenos Biofísicos/efectos de los fármacos , Fenómenos Biofísicos/genética , Modelos Animales de Enfermedad , Dopamina/metabolismo , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Conducta Exploratoria/efectos de los fármacos , Humanos , Levodopa/farmacología , Levodopa/uso terapéutico , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microdiálisis/métodos , Mutación/genética , Oxidopamina/toxicidad , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Técnicas de Placa-Clamp , Cintigrafía , Ratas , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Simpaticolíticos/toxicidad , Sinaptosomas/diagnóstico por imagen , Sinaptosomas/efectos de los fármacos , Tritio/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/genética
    20.
    Neurobiol Aging ; 33(8): 1792-9, 2012 Aug.
    Artículo en Inglés | MEDLINE | ID: mdl-21684039

    RESUMEN

    The interactions between certain α-synuclein (SNCA) conformations and dopamine (DA) metabolism cause selective DA neuron degeneration in Parkinson's disease (PD). Preclinical research on PD took advantage of increasing studies involving different animal models which express different forms of mutated SNCA. Transgenic animals expressing mutant α-synucleins such as mice transgenic for A53T-SNCA (TG) are considered valuable models to assess specific aspects of the pathogenesis of synucleinopathies and PD. In this study we performed electrophysiological recordings in corticostriatal slice preparations from young TG overexpressing mice, in which extracellular striatal DA levels appeared to be normal, and in old TG mice, characterized by abnormalities in striatal DA signaling and impaired long-term depression (LTD). We report no difference in TG mice from the two groups of age of either the basal membrane properties and synaptic striatal excitability in respect to age-matched wild-type mice. Furthermore, in old TG mice, showing plastic abnormalities and motor symptoms, we investigated the mechanisms at the basis of the altered LTD. In old TG mice LTD could not be restored by treatments with acute application of DA or by subchronic treatment with L-3,4-dihydroxyphenylalanine (L-DOPA). Conversely, the application of the phosphodiesterase inhibitor zaprinast fully restored LTD to normal conditions via the stimulation of a cyclic guanosine monophosphate (GMP)-protein kinase G-dependent intracellular signaling pathway. These results suggest that, in addition to the dopaminergic alterations reported in this genetic model of PD, other signal transduction pathways linked to striatal synaptic plasticity are altered in an age-dependent manner.


    Asunto(s)
    Potenciales de Acción/fisiología , Envejecimiento/fisiología , Cuerpo Estriado/fisiología , Transmisión Sináptica/fisiología , alfa-Sinucleína/metabolismo , Animales , Ratones , Ratones Transgénicos , Plasticidad Neuronal , Regulación hacia Arriba/fisiología , alfa-Sinucleína/genética
    SELECCIÓN DE REFERENCIAS
    DETALLE DE LA BÚSQUEDA
    ...