Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Dent Res ; 103(3): 318-328, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38343385

RESUMEN

Interferon regulatory factor 8 (IRF8), a transcription factor expressed in immune cells, functions as a negative regulator of osteoclasts and helps maintain dental and skeletal homeostasis. Previously, we reported that a novel mutation in the IRF8 gene increases susceptibility to multiple idiopathic cervical root resorption (MICRR), a form of tooth root resorption mediated by increased osteoclast activity. The IRF8 G388S variant in the highly conserved C-terminal motif is predicted to alter the protein structure, likely impairing IRF8 function. To investigate the molecular basis of MICRR and IRF8 function in osteoclastogenesis, we generated Irf8 knock-in (KI) mice using CRISPR/Cas9 technique modeling the human IRF8G388S mutation. The heterozygous (Het) and homozygous (Homo) Irf8 KI mice showed no gross morphological defects, and the development of hematopoietic cells was unaffected and similar to wild-type (WT) mice. The Irf8 KI Het and Homo mice showed no difference in macrophage gene signatures important for antimicrobial defenses and inflammatory cytokine production. Consistent with the phenotype observed in MICRR patients, Irf8 KI Het and Homo mice demonstrated significantly increased osteoclast formation and resorption activity in vivo and in vitro when compared to WT mice. The oral ligature-inserted Het and Homo mice displayed significantly increased root resorption and osteoclast-mediated alveolar bone loss compared to WT mice. The increased osteoclastogenesis noted in KI mice is due to the inability of IRF8G388S mutation to inhibit NFATc1-dependent transcriptional activation and downstream osteoclast specific transcripts, as well as its impact on autophagy-related pathways of osteoclast differentiation. This translational study delineates the IRF8 domain important for osteoclast function and provides novel insights into the IRF8 mutation associated with MICRR. IRF8G388S mutation mainly affects osteoclastogenesis while sparing immune cell development and function. These insights extend beyond oral health and significantly advance our understanding of skeletal disorders mediated by increased osteoclast activity and IRF8's role in osteoclastogenesis.


Asunto(s)
Resorción Ósea , Factores Reguladores del Interferón , Resorción Radicular , Animales , Humanos , Ratones , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Mutación , Factores de Transcripción NFATC/genética , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Resorción Radicular/genética , Resorción Radicular/metabolismo
2.
Pharm Biol ; 56(1): 25-31, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29235395

RESUMEN

CONTEXT: Hippophae rhamnoides L. (Elaeagnaceae), commonly known as seabuckthorn (SBT), is known for its medicinal and nutritional properties. OBJECTIVE: Evaluation of in vivo adjuvant activity of SBT leaf extract (SBTE) with inactivated rabies virus antigen (Rb). MATERIALS AND METHODS: Swiss albino mice were immunized with aqueous-alcoholic SBTE (100 mg/kg body weight) or algel (aluminium hydroxide gel) with or without Rb (5% v/v). After priming, booster was administered on day 14. Rabies virus neutralizing antibody (RVNA) titers were estimated by rapid fluorescent focus inhibition test in sera samples collected on days 7, 14, 21, 28 and 35. Effect of adjuvant administration on cytotoxic T lymphocytes (CTLs), memory T cells, plasma and CD11c+ cells was studied by flow cytometry. In vitro hemolysis was assayed in human RBC. RESULTS: RVNA titers were significantly enhanced (p < 0.05) after booster administration in mice immunized with SBTE + Rb as compared to the controls. In combination, SBTE, algel and Rb, enhanced the RVNA titers. CTLs significantly increased (p < 0.05) in SBTE + Rb immunized mice. Memory T cells and plasma cells were 27.9 and 15.9%, respectively, in SBTE + Rb immunized mice as compared to that of 20.3 and 11.3%, respectively, in Rb immunized group. SBTE + Rb enhanced peritoneal CD11c+ cells (25.8%) as compared to 9.4% cells in Rb immunized mice, showed 3.2-fold increment in LPS induced IL-1ß. No RBC hemolysis was observed with SBTE. CONCLUSIONS: This study demonstrates the potential adjuvant activity of SBTE with Rb by increasing RVNA titers and CTL response.


Asunto(s)
Antígenos Virales/administración & dosificación , Etanol/administración & dosificación , Hippophae , Extractos Vegetales/administración & dosificación , Hojas de la Planta , Virus de la Rabia/efectos de los fármacos , Animales , Quimioterapia Adyuvante , Femenino , Humanos , Masculino , Ratones , Extractos Vegetales/aislamiento & purificación , Virus de la Rabia/fisiología , Linfocitos T/efectos de los fármacos , Linfocitos T/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA