Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(9): 1168-1171, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38193242

RESUMEN

We report an electrochemical device for portable on-site detection of gaseous CH3I based on PVIm-F for the first time. The device achieves detection of gaseous CH3I with a significant selectivity and a low detection limit (0.474 ppb) in 20 min at 50 °C and 50% relative humidity, which is of great significance for achieving real-time on-site monitoring of radioactive hazardous environments.

2.
J Hazard Mater ; 465: 133480, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38219589

RESUMEN

Hazardous biological pathogens in the air pose a significant public environmental health concern as infected individuals emit virus-laden aerosols (VLAs) during routine respiratory activities. Mask-wearing is a key preventive measure, but conventional filtration methods face challenges, particularly in high humidity conditions, where electrostatic charge decline increases the risk of infection. This study introduces a bio-based air filter comprising glycine ionic liquids (GILs) and malleable polymer composite (GILP) with high polarity and functional group density, which are wrapped around a melamine-formaldehyde (MF) resin skeleton, forming a conductive, porous GIL functionized ionic network air filter (GILP@MF). When subjected to low voltage, the GILP@MF composite efficiently captures VLAs including nanoscale virus particles through the enhanced electrostatic attraction, especially in facing high humidity bioaerosols exhaled by human body. The filtration/collection efficiency and quality factor can reach 98.3% and 0.264 Pa-1 at 0.1 m s-1, respectively. This innovative filter provides effective VLA protection and offers potential for non-invasive respiratory virus sampling, advancing medical diagnosis efforts.


Asunto(s)
Líquidos Iónicos , Humanos , Electricidad Estática , Tamaño de la Partícula , Filtración , Aerosoles
3.
Adv Mater ; 36(14): e2311990, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38154086

RESUMEN

Along with the development of nuclear power, concerns about radioactive emissions and the potential for nuclear leakage have been widely raised, particularly of harmful iodine isotopes. However, as a significant component of nuclear air waste, the enrichment and detection of air-dispersed gaseous iodine remain a challenge. In this work, it is focused on developing an attraction-immobilization-detection strategy-based fluorescence method for the on-site detection of volatile iodine, by employing a photoluminescent ionic polyimine network-polyvinylpyrrolidone (IPIN-PVP) composite membrane. This strategy synergizes ion-induced dipole interactions from IPIN and complexation effects from PVP, allowing effective iodine enrichment and immobilization. As a result, the optimized IPIN-PVP membrane exhibits rapid response times of 5 s and a low detection limit of 4.087 × 10-8 m for gaseous iodine. It also introduces a portable handheld detection device that utilizes the composite membrane, offering a practical solution for real-time on-site detection of volatile iodine. This innovation enhances nuclear safety measures and disaster management by providing rapid and reliable iodine detection capabilities.

4.
Nat Commun ; 14(1): 8181, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081805

RESUMEN

Covalent organic frameworks show great potential in gas adsorption/separation, biomedicine, device, sensing, and printing arenas. However, covalent organic frameworks are generally not dispersible in common solvents resulting in the poor processability, which severely obstruct their application in practice. In this study, we develop a convenient top-down process for fabricating solution-processable covalent organic frameworks by introducing intermolecular hydrogen bonding and π-π interactions from ionic liquids. The bulk powders of imine-linked, azine-linked, and ß-ketoenamine linked covalent organic frameworks can be dispersed homogeneously in optimal ionic liquid 1-methyl-3-octylimidazolium bromide after heat treatment. The resulting high-concentration colloids are utilized to create the covalent organic framework inks that can be directly printed onto the surface. Molecular dynamics simulations and the quantum mechanical calculations suggest that C‒H···π and π-π interaction between ionic liquid cations and covalent organic frameworks may promote the formation of colloidal solution. These findings offer a roadmap for preparing solution-processable covalent organic frameworks, enabling their practical applications.

5.
Dalton Trans ; 52(26): 8975-8985, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37327005

RESUMEN

A series of green and safe heavy-rare-earth ionic liquids were obtained using a straightforward method. The stable structures of these ionic liquids, characterized by high-coordinating anions, were confirmed by nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, and single crystal X-ray diffraction (XRD). These ionic liquids exhibited wide liquid phase intervals and excellent thermal stability. The bidentate nitrato ligands occupied a sufficient number of coordination sites on the lanthanide ions, resulting in the formation of water-free 10-coordination structures. To explain the anomalous melting points observed in these multi-charged ionic liquids, a combination of experimental data and theoretical studies was employed to investigate the relationship between the electrostatic properties and the melting point. The electrostatic potential density per unit ion surface and volume were proposed and utilized for melting point prediction, demonstrating good linearity. Furthermore, the coordinating spheres of the lanthanide ions in these ionic liquids were devoid of luminescence quenchers such as O-H and N-H groups. Notably, the ionic liquids containing Ho3+, Er3+, and Tm3+ exhibited long lifetime near-infrared (NIR) and blue emissions, respectively. The UV-vis-NIR spectra revealed numerous electronic transitions of the lanthanide ions, which were attributed to their unique optical properties.

6.
Small ; 19(39): e2302570, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37229752

RESUMEN

Adsorption, storage, and conversion of gases (e.g., carbon dioxide, hydrogen, and iodine) are the three critical topics in the field of clean energy and environmental mediation. Exploring new methods to prepare high-performance materials to improve gas adsorption is one of the most concerning topics in recent years. In this work, an ionic liquid solution process (ILSP), which can greatly improve the adsorption kinetic performance of covalent organic framework (COF) materials for gaseous iodine, is explored. Anionic COF TpPaSO3 H is modified by amino-triazolium cation through the ILSP method, which successfully makes the iodine adsorption kinetic performance (K80% rate) of ionic liquid (IL) modified COF AC4 tirmTpPaSO3 quintuple compared with the original COF. A series of experimental characterization and theoretical calculation results show that the improvement of adsorption kinetics is benefited from the increased weak interaction between the COF and iodine, due to the local charge separation of the COF skeleton caused by the substitution of protons by the bulky cations of ILs. This ILSP strategy has competitive help for COF materials in the field of gas adsorption, separation, or conversion, and is expected to expand and improve the application of COF materials in energy and environmental science.

7.
J Am Chem Soc ; 145(11): 6177-6183, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36857470

RESUMEN

Adaptive bionic self-correcting behavior offers an attractive property for chemical systems. Here, based on the dynamic feature of imine formation, we propose a solvent-responsive strategy for smart switching between an amorphous ionic polyimine membrane and a crystalline organic molecule cage without the addition of other building blocks. To adapt to solvent environmental constraints, the aldehyde and amine components undergo self-correction to form a polymer network or a molecular cage. Studies have shown that the amorphous film can be switched in acetonitrile to generate a discrete cage with bright birefringence under polarized light. Conversely, the membrane from the cage crystal conversion can be regained in ethanol. Such a membrane-cage interconversion can be cycled continuously at least 5 times by switching the two solvents. This work builds a bridge between the polymer network and crystalline molecules and offers prospects for smart dynamic materials.

8.
ACS Appl Mater Interfaces ; 15(10): 13637-13643, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36877534

RESUMEN

The inevitable usage of toxic lead impedes the commercialization of lead halide perovskite solar cells, especially considering lead ions potentially unseals from the discarded and damaged devices and consequently contaminates the environment. In this work, we proposed a poly(ionic liquid) (PIL) cohered sandwich structure (PCSS) to realize lead sequestration in perovskite solar cells by a water-proof and adhesive poly([1-(3-propionic acid)-3-vinylimidazolium] bis(trifluoromethanesulphonyl)imide (PPVI-TFSI). A transparent ambidextrous protective shield manufactured from PPVI-TFSI was achieved and applied in lead sequestration for perovskite solar cells. PCSS provides robustness and water-resistance, which improves device stability toward water erosion and extreme situations (such as acid, base, salty water, and hot water). PPVI-TFSI exhibited excellent affinity toward lead with adsorption capacity of 516 mg·g-1, which assisted to prevent lead leakage in abandoned devices as proved in the test of wheat germination vividly. PCSS provides a promising solution for complex lead sequestration and management issues, which contribute to the commercialization of perovskite solar cells.

9.
J Hazard Mater ; 430: 128490, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739671

RESUMEN

Detection of hazardous compounds can alleviate risk to human health. However, it remains a challenge to develop easy-to-use testing tools for carcinogenic aromatic amines. Herein, we presented a conjugated molecule-based aniline detector, mixed matrix membranes (MMMs), through the solution-processable strategy. The pentacene-based dispersed phase is achieved using the state-of-the-art ionic liquids (ILs) as the continuous phase, based on which MMMs are easily manufactured by a solution process. Moreover, molecular dynamics (MD) simulations and quantum mechanical calculations suggested that hydrogen bonding and π-π interaction between ILs cations and pentacene could promote the dissolution. These prepared MMMs can offer easy-operation and on-site detection of carcinogenic primary aromatic amines with eye-readable fluorescence signal. This work provides a paradigm for the design of a portable testing device for various hazardous compounds.


Asunto(s)
Líquidos Iónicos , Aminas , Humanos , Hidrógeno , Enlace de Hidrógeno , Simulación de Dinámica Molecular
10.
J Hazard Mater ; 425: 127981, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34883380

RESUMEN

Public anxiety and concern from cesium pollution in oceans have been back on the agenda since tons of nuclear waste water were announced to be poured into oceans. Cesium ion can easily enter organisms and bioaccumulate in animals and plants, thus its harm is chronic to humans through food chains. Here we showed a kind of hybrid ionic liquid membrane (HILM) for detection of cesium ion in seawater through CsPbBr3 perovskite fluorescence. With sustainability in mind, HILM was built frugally. The lowest cost of HILM is below 3 cents per piece. The HILM can detect cesium ion quickly with eye-readable fluorescence signal. Ultracheap, portable, easy-to-use on-site detection device could offer benefit for personal security and applications in environment science and ecology in the future decades.


Asunto(s)
Compuestos de Calcio , Cesio , Animales , Fluorescencia , Humanos , Óxidos , Titanio
11.
Molecules ; 26(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375527

RESUMEN

[AAE]X composed of amino acid ester cations is a sort of typically "bio-based" protic ionic liquids (PILs). They possess potential Brønsted acidity due to the active hydrogens on their cations. The Brønsted acidity of [AAE]X PILs in green solvents (water and ethanol) at room temperature was systematically studied. Various frameworks of amino acid ester cations and four anions were investigated in this work from the viewpoint of structure-property relationship. Four different ways were used to study the acidity. Acid dissociation constants (pKa) of [AAE]X determined by the OIM (overlapping indicator method) were from 7.10 to 7.73 in water and from 8.54 to 9.05 in ethanol. The pKa values determined by the PTM (potential titration method) were from 7.12 to 7.82 in water. Their Hammett acidity function (H0) values (0.05 mol·L-1) were about 4.6 in water. In addition, the pKa values obtained by the DFT (proton-transfer reactions) were from 7.11 to 7.83 in water and from 8.54 to 9.34 in ethanol, respectively. The data revealed that the cationic structures of [AAE]X had little effect and the anions had no effect on the acidity of [AAE]X. At the same time, the OIM, PTM, Hammett method and DFT method were reliable for determining the acidic strength of [AAE]X in this study.


Asunto(s)
Líquidos Iónicos/química , Protones , Solventes/química , Agua/química , Aminoácidos/química , Aniones/química , Cationes/química , Ésteres/química
12.
Sci Adv ; 6(49)2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33277244

RESUMEN

A new generation of rocket propellants for deep space exploration, ionic liquid propellants, with long endurance and high stability, is attracting more and more attention. However, a major defect of ionic liquid propellants that restricts their application is the inadequate hypergolic reactivity between the fuel and the oxidant, and this defect results in local burnout and accidental explosions during the launch process. We propose a visualization model to show the features of structure, density, thermal stability, and hypergolic activity for estimating propellant performances and their application abilities. This propellant materials genome and visualization model greatly improves the efficiency and quality of developing high-performance propellants, which benefits the discovery of new advanced functional molecules in the field of energetic materials.

13.
Inorg Chem ; 59(18): 13700-13708, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32902266

RESUMEN

Salts composed of multicharged cations/anions usually exhibit a large lattice energy and strong Coulomb force, which results in high melting points. However, an increasing number of highly charged ionic liquids exceed expectations based on conventional experience; even their melting points are much lower than those found for simple ionic liquids composed of monovalent ions. To further study this phenomenon, we studied a group of stable ionic liquids containing tricharged [Ce(NO3)6]3- and [Pr(NO3)6]3- anions. The structures for [C6mim]3[Ce(NO3)6] and [C6mim]3[Pr(NO3)6] were determined by single-crystal X-ray diffraction with triclinic and P1̅ space groups. The electrostatic potential density per unit ion surface and volume was proposed and calculated. Additionally, theoretical analysis based on Hirshfeld surface and charge decomposition was carried out to explore the intermolecular interaction and electronic structure of the lanthanide anions. The electrostatic and orbital properties were found to be more useful for understanding the melting points of highly charged salts compared with the sole use of lattice energy. The electrostatic potential density per unit ion surface and volume showed a linear relationship with the melting point of ionic liquids composed of monovalent to trivalent ions. These structure-melting point relationships will be beneficial for expounding new low-melting-point ionic liquids with a wide liquidus range.

14.
Angew Chem Int Ed Engl ; 59(47): 20846-20851, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-32770618

RESUMEN

A novel low-symmetry organic molecular cage with distinctive geometry was successfully synthesized from 5,5'-(propane-2,2-diyl)bis(2-hydroxyisophthalaldehyde) and 1,2-cyclohexanediamine building blocks, through the desymmetrized vertex design strategy. Single-crystal X-ray crystallographic analysis shows that the cage contains asymmetrical and nonplanar windows, exhibiting an unprecedented C2 symmetry and an efficient packing. The molecular cage structure was also characterized by FTIR, NMR, and MALDI-TOF. Quantum chemistry studies show that the cage structure contains rare intramolecular hydrogen-hydrogen (C-H⋅⋅⋅H-C) bonding interactions. The cage crystals exhibit high iodine vapor uptake (3.78 g g-1 ), which is among the highest for porous molecular materials. The knowledge gained in this study would open new possibilities for the design and synthesis of molecular cages with novel topologies targeting a broad range of applications.

15.
Small ; 16(29): e2000930, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32583969

RESUMEN

The inorganic semiconductor is an attractive material in sewage disposal and solar power generation. The main challenges associated with environment-sensitive semiconductors are structural degradation and deactivation caused by the unfavorable environment. Here, inspired by the pomegranate, a self-protection strategy based on the self-assembly of silver chloride (AgCl) particles is reported. The distributed photosensitive AgCl particles can be encapsulated by themselves through mixing aqueous silver nitrate and protic ionic liquids (PILs). A probable assembling mechanism is proposed based on the electrostatic potential investigation of PILs cations. The AgCl particles inside the shell maintain their morphology and structure well after 6 months light-treatment. Moreover, they exhibit excellent photocatalytic activity, same as newly prepared AgCl particles, for degradation of methyl orange (MO), neutral red (NR), bromocresol green (BG), rhodamine B (RhB), Congo red (CR), and crystal violet (CV).

16.
Nat Commun ; 11(1): 1653, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245962

RESUMEN

Particulate matter (PM) pollutants, including nanoscale particles (NPs), have been considered serious threats to public health. In this work, a self-powered air filter that can be used in high-efficiency removal of PM, including NPs, is presented. An ionic liquid-polymer (ILP) composite is irregularly distributed onto a sponge network to form an ILP@MF filter. Enabled by its unique electrochemical properties, the ILP@MF filter can remove PM2.5 and PM10 with high efficiencies of 99.59% and 99.75%, respectively, after applying a low voltage. More importantly, the charged ILP@MF filter realizes a superior removal for NPs with an efficiency of 93.77%. A micro-button lithium cell or silicon-based solar panel is employed as a power supply platform to fabricate a portable and self-powered face mask, which exhibits excellent efficacy in particulate removal compared to commercial masks. This work shows a great promise for high-performance purification devices and facile mask production to remove particulate pollutants.


Asunto(s)
Filtros de Aire , Restauración y Remediación Ambiental/métodos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Nanopartículas/análisis
17.
Sci Rep ; 10(1): 4477, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161293

RESUMEN

Ensuring the security for long-term storage of weapons is always of the great cMehilaloncerns in the field of energetic materials. 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) is a remarkable explosive applied in nuclear weapons where extreme safety is required primarily. Owing to the strong inter or intra molecular hydrogen bonding, TATB shows poor solubility in most solvents. As the result, the particle shape and size of TATB products is hard to regulate, which closely related to the weapons stability. Herein, a new recrystallization method is provided to refine TATB using bicarbonate ionic liquids. Bicarbonate ionic liquids exhibited the record solubility (26.7 wt%) for dissolving TATB explosive. The recrystallized TATB were spherical particles with uniform size and showed extremely insensitivity to impact (>100 J) and friction (>360 N). Moreover, the experimental 1H and 13C NMR spectra of TATB in solution are reported for the first time.

18.
Chem Commun (Camb) ; 55(91): 13661-13664, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31603447

RESUMEN

We report a handy, simple and inexpensive paper device for extremely sensitive detection of peroxide-based explosives. The sensing device fabricated using a curcumin derivative was capable of ultrafast sensing of triacetone triperoxide. The detection time was below 5 s. Moreover, the sensor retained full function under storage at ambient temperature for at least 120 days.

19.
Chemphyschem ; 20(23): 3259-3268, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31536671

RESUMEN

Protic ionic liquids (PILs) in solution especially in water have attracted more and more attention due to their unique properties. The solvation of PILs in water is important to their properties and applications. To explore the solvation of bio-based PILs in water, acidity of 49 [AA]X amino acid ionic liquids (AAILs) consisting of 7 different cations and 7 different anions was studied as a favorable probe. The pKa values for [AA]X PILs containing same cations were obtained and discussed. The acidity strength of the [AA]X PILs varies with both cation and anion which does not follow the conventional assumption that the acidity for PILs is independent of anions. The acidic discrepancy of [AA]X PILs aqueous solution is probably mediated by the formation of ion pairs according to a revised solvation model of PILs. Quantum-chemistry calculation was employed to unpuzzle anion's different effects on the acid balance of cations where cation-anion hydrogen bonds play an important role. Such difference in acidity allows us to understand the formation of solvated ion pairs. This work provides an insight into the fundamental solvation of PILs from acid perspective and their influence on acidity properties for the first time.

20.
J Phys Chem B ; 123(30): 6536-6542, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31265786

RESUMEN

Amino-functionalized ionic liquids (IL) are often applied to fix CO2. However, as far as we know, none of them have ever been reported to exhibit considerable physical CO2 capture. Herein, we describe an amino-functionalized room-temperature ionic liquid, 1-butyl-3-methylimidazolium 3-amino-1H-1,2,4-triazolate ([Bmim][ATZ]), with an unusual ultrafast physical CO2 capture at room temperature and atmospheric pressure. Within the time needed for a chemisorbent to reach an equilibrium, 15 adsorption and desorption cycles are finished for [Bmim][ATZ], with an accumulative molar ratio of up to 2.04. The CO2/IL ratio for one adsorption process reaches 0.14, which is 4 times the highest recorded physical CO2 solubility by [thtdp][Cl] (trihexyltetradecylphosphonium chloride). The first theoretical study on anion-anion interactions of ionic liquids is reported, which rationalizes the inhibition of chemical adsorption. These results provide a new perspective on the aspect of CO2 capture, as well as designing of ionic liquids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA