Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Aging ; 3(2): 173-184, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37118115

RESUMEN

The microvascular inflow tract, comprising the penetrating arterioles, precapillary sphincters and first-order capillaries, is the bottleneck for brain blood flow and energy supply. Exactly how aging alters the structure and function of the microvascular inflow tract remains unclear. By in vivo four-dimensional two-photon imaging, we reveal an age-dependent decrease in vaso-responsivity accompanied by a decrease in vessel density close to the arterioles and loss of vascular mural cell processes, although the number of mural cell somas and their alpha smooth muscle actin density were preserved. The age-related reduction in vascular reactivity was mostly pronounced at precapillary sphincters, highlighting their crucial role in capillary blood flow regulation. Mathematical modeling revealed impaired pressure and flow control in aged mice during vasoconstriction. Interventions that preserve dynamics of cerebral blood vessels may ameliorate age-related decreases in blood flow and prevent brain frailty.


Asunto(s)
Capilares , Pericitos , Ratones , Animales , Pericitos/fisiología , Capilares/fisiología , Arteriolas/fisiología , Encéfalo/irrigación sanguínea , Hemodinámica
2.
Light Sci Appl ; 10(1): 179, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34493703

RESUMEN

Photobiomodulation, by utilizing low-power light in the visible and near-infrared spectra to trigger biological responses in cells and tissues, has been considered as a possible therapeutic strategy for Alzheimer's disease (AD), while its specific mechanisms have remained elusive. Here, we demonstrate that cognitive and memory impairment in an AD mouse model can be ameliorated by 1070-nm light via reducing cerebral ß-amyloid (Aß) burden, the hallmark of AD. The glial cells, including microglia and astrocytes, play important roles in Aß clearance. Our results show that 1070-nm light pulsed at 10 Hz triggers microglia rather than astrocyte responses in AD mice. The 1070-nm light-induced microglia responses with alteration in morphology and increased colocalization with Aß are sufficient to reduce Aß load in AD mice. Moreover, 1070-nm light pulsed at 10 Hz can reduce perivascular microglia and promote angiogenesis to further enhance Aß clearance. Our study confirms the important roles of microglia and cerebral vessels in the use of 1070-nm light for the treatment of AD mice and provides a framework for developing a novel therapeutic approach for AD.

3.
Cytometry A ; 99(6): 586-592, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33797159

RESUMEN

Circulating tumor cells (CTCs) play an essential role in metastasis and serve as an important prognostic biomarker. The technology of CTC labeling and detection in vivo can greatly improve the research of cancer metastasis and therapy. However, there is no in vivo technology to detect CTCs in clinic. In this study, we demonstrate that 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG), a 2-deoxy-glucose analog, can work in vivo to indicate CTCs and metastases fluorescently by direct intravenous injection. During the development of an implanted tumor in mice, the spontaneous CTCs released from the primary tumor into blood vessels can be labeled by 2-NBDG due to the abnormal metabolism of CTCs. The green fluorescence of 2-NBDG from CTCs is then noninvasively detected by an in vivo flow cytometry system. Due to the high uptake of glucose by tumor cells, the CTCs in mice can maintain a high 2-NBDG level and thus be distinguished by 2-NBDG fluorescence in vivo efficiently, enabling tumor detection in vivo like positron emission tomography (PET) but at the single-cell resolution. Our results suggest 2-NBDG, a glucose analog with high biosafety, holds promising potential in clinical applications, similar to the widely-used contrast medium 2-F18 -fluorodeoxyglucose in PET.


Asunto(s)
Células Neoplásicas Circulantes , Animales , Transporte Biológico , Recuento de Células , Citometría de Flujo , Glucosa , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...