Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35406838

RESUMEN

Nonhost resistance refers to resistance of a plant species to all genetic variants of a non-adapted pathogen. Such resistance has the potential to become broad-spectrum and durable crop disease resistance. We previously employed Arabidopsis thaliana and a forward genetics approach to identify plant mutants susceptible to the nonhost pathogen Phytophthora sojae, which resulted in identification of the T-DNA insertion mutant esp1 (enhanced susceptibility to Phytophthora). In this study, we report the identification of VQ motif-containing protein 28 (VQ28), whose expression was highly up-regulated in the mutant esp1. Stable transgenic A. thaliana plants constitutively overexpressing VQ28 compromised nonhost resistance (NHR) against P. sojae and P. infestans, and supported increased infection of P. parasitica. Transcriptomic analysis showed that overexpression of VQ28 resulted in six differentially expressed genes (DEGs) that are involved in the response to abscisic acid (ABA). High performance liquid chromatography-mass spectrometry (HPLC-MS) detection showed that the contents of endogenous ABA, salicylic acid (SA), and jasmonate (JA) were enriched in VQ28 overexpression lines. These findings suggest that overexpression of VQ28 may lead to an imbalance in plant hormone homeostasis. Furthermore, transient overexpression of VQ28 in Nicotiana benthamiana rendered plants more susceptible to Phytophthora pathogens. Deletion mutant analysis showed that the C-terminus and VQ-motif were essential for plant susceptibility. Taken together, our results suggest that VQ28 negatively regulates plant NHR to Phytophthora pathogens.

2.
Plant Sci ; 286: 17-27, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31300138

RESUMEN

The plant-specific gibberellic acid (GA)-stimulated transcript gene family is critical for plant growth and development. There are 10 family members in rice (Oryza sativa), known as OsGASRs. However, few have been functionally characterized. Here, we investigated the function of OsGASR9 in rice. OsGASR9 transcripts were detected in various tissues, with the lowest and highest levels in leaves and panicles, respectively. Greater mRNA levels accumulated in young, compared with in old, panicles and spikelets. OsGASR9 localized to the plasma membrane, cytoplasm and nucleus. Transgenic RNA interference-derived lines in the Zhonghua 11 background exhibited reduced plant height, grain size and yield compared with the wild-type. The two osgasr9 mutants in the Nipponbare background showed similar phenotypes. Conversely, the overexpression of OsGASR9 in the two backgrounds increased plant height and grain size. A significantly increased grain yield per plant was also observed in the overexpression lines having a Nipponbare background. Furthermore, by measuring the GA-induced lengths of the second leaf sheaths and α-amylase activity levels of seeds, we concluded that OsGASR9 is a positive regulator of responses to GA in rice. Thus, OsGASR9 may regulate plant height, grain size and yield through the GA pathway and could have an application value in breeding.


Asunto(s)
Giberelinas/metabolismo , Oryza/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Perfilación de la Expresión Génica , Familia de Multigenes , Oryza/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Interferencia de ARN
3.
Plant Physiol ; 180(2): 952-965, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30926655

RESUMEN

Stigma and ovule initiation is essential for sexual reproduction in flowering plants. However, the mechanism underlying the initiation of stigma and ovule primordia remains elusive. We identified a stigma-less mutant of rice (Oryza sativa) and revealed that it was caused by the mutation in the PINOID (OsPID) gene. Unlike the pid mutant that shows typical pin-like inflorescences in maize (Zea mays) and Arabidopsis (Arabidopsis thaliana), the ospid mutant does not display any defects in inflorescence development and flower initiation, and fails to develop normal ovules in most spikelets. The auxin activity in the young pistil of ospid was lower than that in the wild-type pistil. Furthermore, the expression of most auxin response factor genes was down-regulated, and OsETTIN1, OsETTIN2, and OsMONOPTEROS lost their rearrangements of expression patterns during pistil and stamen primordia development in ospid Moreover, the transcription of the floral meristem marker gene, OSH1, was down-regulated and FLORAL ORGAN NUMBER4, the putative ortholog of Arabidopsis CLAVATA3, was up-regulated in the pistil primordium of ospid These results suggested that the meristem proliferation in the pistil primordium might be arrested prematurely in ospid Based on these results, we propose that the OsPID-mediated auxin signaling pathway plays a crucial role in the regulation of rice stigma and ovule initiation by maintaining the floral meristem.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Meristema/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Óvulo Vegetal/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Tipificación del Cuerpo , Núcleo Celular/metabolismo , Regulación hacia Abajo/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Meristema/ultraestructura , Modelos Biológicos , Mutación/genética , Oryza/embriología , Oryza/genética , Óvulo Vegetal/metabolismo , Óvulo Vegetal/ultraestructura , Proteínas de Plantas/genética , Haz Vascular de Plantas/metabolismo , Semillas/embriología
4.
Rice (N Y) ; 12(1): 5, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30706248

RESUMEN

BACKGROUND: qPE9-1/DEP1, encoding a G protein γ subunit, has multiple effects on plant architecture, grain size, and yield in rice. The qPE9-1 protein contains an N-terminal G gamma-like (GGL) domain, a putative transmembrane domain, and a C-terminal cysteine-rich domain. However, the roles of each domain remain unclear. RESULTS: In the present study, we focused on the genetic effects of different domains of qPE9-1 in the regulation of grain length and weight. We generated a series of transgenic plants expressing different truncated qPE9-1 proteins through constitutive expression and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 strategies. Phenotypic analysis indicated that the complete or long-tailed qPE9-1 contributed to the elongation of grains, while the GGL domain alone and short-tailed qPE9-1 led to short grains. The long C-terminus of qPE9-1 including two or three C-terminal von Willebrand factor type C domains effectively repressed the negative effects of the GGL domain on grain length and weight. qPE9-1-overexpressing lines in a Wuxianggeng 9 (carrying a qpe9-1 allele) background showed increased grain yield per plant, but lodging occurred in some years. CONCLUSIONS: Manipulation of the C-terminal length of qPE9-1 through genetic engineering can be used to generate varieties with various grain lengths and weights according to different requirements in rice breeding. The genetic effects of qPE9-1/qpe9-1 are multidimensional, and breeders should take into account other factors including genetic backgrounds and planting conditions in the use of qPE9-1/qpe9-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA